
•. "b

Final Technical Report
/

1
t

C_

I _-- C.;

_9

Z _3
C _ C

[:.J E,--

J -_ !' kJ

_!!i I.- C r'

i_ L..: Lt.

,'_ F- --J ...J ¢-- _

C .J_,

_ _i' _ ,,',.-

Instructional Authoring by Direct
Manipulation of Simulations:

Exploratory Applications of RAPIDS

RAPID S !! A u th oring Man ual

Behavioral Technology Laboratories

August, 1990

Cooperative Agreement NCC 9-16
Research Activity No. ET.13

NASA Johnson Space Center
Mission Operations Directorate
Space Station Training Office

O ©

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.
The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

Final Technical Report

Instructional Authoring by Direct
Manipulation of Simulations:

Exploratory Applications of RAPIDS

RAPID S !! A u th oring Man ual

Behavioral Technology Laboratories

August, 1990

Cooperative Agreement NCC 9-16

Research Activity No. ET. 13

NASA Johnson Space Center

Mission Operations Directorate

Space Station Training Office

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by the Behavioral Technology Laboratories,

University of Southern California. Dr. Glenn B. Freedman served as RICIS
research coordinator.

Funding has been provided by the Mission Operations Directorate,

NASA/JSC through Cooperative Agreement NCC 9-16 between NASA Johnson

Space Center and the University of Houston-Clear Lake. The NASA technical

monitor for this activity was Barbara N. Pearson, of the Systems/Elements Office,

Space Station Training Office, Mission Operations Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either

express or implied, of NASA or the United States Government.

Final Technical Report

Instructional Authoring by Direct
Manipulation of Simulations:

Exploratory Applications of RAPIDS

RAPIDS II

Authoring Manual

August 1990

Documentation:
Allen Munro

Design of RAPIDS ll:
Lee D. Coiler, Allen Munro, Quentin A. Pizzim, David S. Surmon,

Douglas M. Towne, and James L. Wogulis

Implementation of RAPIDS H:
Lee D. Coller, Quentin A. Pizzini, David S. Surmon, and James L. Wogulis

Behavioral Technology Laboratories
University of Southern California

250 North Harbor Drive, Suite 309
Redondo Beach, CA 90277

(213)379-0844

Information in this document is subject to change without notice and
does not represent a commitment on the part of the University of
Southern California.

© Behavioral Technology Laboratories, USC, 1988, 1989, 1990

ACKNOWLEDGEMENTS

The development of RAPIDS H was supported by the Air Force
Human Resources Laboratory under RICIS Research Activity No.
ET.13 (NASA Cooperative Agreement NCC9-16). J. Wesley Regian
served as AFHRL scientific officer for this project.

RAPIDS II is based in part on the Intelligent Maintenance Training
System (IMTS) and on RAPIDS, which were developed at Behavioral
Technology Labs, USC, under the sponsorship of the Office of Naval
Research. the Navy Personnel Research and Development Center, and
the Air Force Human Resources Laboratories, under ONR contracts
N00014-85-C-0040, N00014-86-K-0793, and N00014-87-C00489.

iii

2

3

4

5

TABLE OF CONTENTS

Preface: RAPIDS Ii and Original RAPIDS vii

Rapid Development of Simulation-Based Instruction 1

Why RAPIDS II 2
Overview of Course Authoring 3
Simulation Composition 4
Authoring Instructional Content 8
Developing an Instructional Organization
Installing RAPIDS II 14
Using this Manual 16

11

The RAPIDS IIStudent Interface 17

Examples of Content Presentation
The Options Menu 27
Modes of Instruction 28

19

Building Generic Objects 29

The Role of Generic Objects

Using the Generic Editor 31

Object Operations 36

State Operations 48

Drawing Operations 57

Window Operations 61

29

Rule Authoring 64

Rules in Rapids II 64
Internal Rules 66
External Rules 74
Rule Editor Features

Rule Syntax 80
78

Developing Simulations 83

The Role of the Simulation Scene
Building a Simple Simulation 88
How Simulation Works 96
Viewing Simulation Data 99
Editor Operations 107
Object Operations 108
Simulation Operations 111
Run-Time Corrections 117

Simulation Debugging 124
Multi-Scene Simulations 134

Display-Window Operations 137

83

iy

6 Using Attribute handles 140

An Example Simulation: A Simple Electrical Relay
Connecting with the Mouse 143
Using Make Connection 154
Creating Test Equipment 159

7 Authoring Instructional Content 163

Content Units 165
Editing Content Unit Data 168
The Content Items Menu 175
Content Item Data 177
Student Actions 178
Expositions 187
The Global Editor Commands 191

8 Instructional Organization 192

A Sample Instructional Organization 193
Creating a New Instructional Organization 194
Student Evaluation in RAPIDS II 202

Authoring Conditional Course Sequences 205
Local Editing in Large Trees 209

9 Instructor Utilities 211

Testing a Course 211
Building a Turnkey Training Environment
Examining Student Data 214

213

References 217

Index 219

141

Preface

Locality of

RAPIDS II and Original RAPIDS

RAPIDS H is based, in part, on RAPIDS, a simulation-based
intelligent-CBI authoring system. In original RAPIDS, simulations
were created using IMTS, a simulation-composition and -delivery
system. IMTS showed the productivity of a direct-manipulation
approach to creating interactive graphical simulations. Experience
with IMTS suggested ways that simulation editing could be made
more powerful and yet be easier to use. RAPIDS H, the successor
to both RAPIDS and IMTS, provides a fundamentally improved
approach to simulation modeling. It also permits the development
of simulations with ongoing processes, animation, and scheduled
events.

Effect In IMTS, two different approaches to modeling devices were
provided. In one approach, called deep simulation, the behavior of
the simulation depended on the defined behaviors of generic
objects. These object behaviors were def'med in terms of the values
of immediate neighbor objects. In the second simulation approach,
called surface simulation, behaviors were defined in terms of values
at other objects, which could be arbitrarily distant.

The deep simulation approach resulted in simulations that could
more easily be modified, and required less painstaking clerical
work. The surface simulation approach was more appropriate when
the author did not understand the behavior of a device in terms of

its components, or when a device was so complex that it was
impractical to define its behavior in terms of the behavior of its
components.

The problem with the deep/surface distinction in IMTS was that it
was absolute. An author could not create a simulation in which

some portions were based on strictly local passing of values, while
other parts of the simulation made use of more remote ('surface')
references to determine behavior.

There are a number of situations in which the strict deep/surface
distinction was inappropriate. For many training simulations, it
would have been convenient to mix the two approaches. It also
would be very useful for authors to develop simulations
incrementally, using 'surface' methods (non-local references and
behavior rules) to prototype their device simulations quickly. Parts
of the simulation could then be made 'deeper' (by using more
generic rules and only local references) in a step-by-step way. This
approach would let authors get simple versions of the whole
simulation working quickly, so that feedback could be elicited from
instructional developers, instructors, and perhaps students at an
early stage of simulation development.

vi

RAPIDS II Rules

Attributes

Continuous
Appearances

In addition to the impossibility of combining deep and surface
approaches in a single simulation, the two styles of authoring
simulation behavior were so different that few authors learned to

employ both approaches. This meant that the simulation approach
chosen for a particular IMTS simulation would depend more on the
previous experience of the author than on the requirements of the
training domain.

In RAPIDS H, a new urdfied approach to simulation replaces both
the deep and surface simulation methods of IMTS.

Rules describe and control the behavior of objects in RAPIDS H.

Rule s.yntax and semantics is described in detail in chapter 4. At this
point, it is enough to know that many features have been added to
make rule authoring easier and less error-prone. In addition, rules
are more widely available to simulation authors than was the case in
IMTS. Rules can be either generic (universal for objects of a given
type) or specific to a particular simulation. Authors can create and
edit rules at the scene level as well as at the genetic object level. The
propagation of effects in a simulation is determined, in part, by
rules created in the scene editor.

Rule editing in RAPIDS H is facilitated by a more powerful menu-
driven editing system than was available in IMTS. In addition, the
Envos Interlisp structure editor has been made available for rule
editing, for the use of authors who are comfortable with that
approach to editing structures.

Attributes are data structures associated with objects. Rules can
refer to attribute values. In IMTS, objects could have only one sort
of attribute, called ports. Ports permitted values to be automatically
passed from one object to another. Behavior rules in generic objects
manipulated port values. In RAPIDS H, a more flexible approach is
taken. Authors can use attributes to manage the same kinds of
values that were carried by ports in IMTS. In addition, however,
authors can make other uses of the attribute mechanism.

Certain attributes are created automatically in RAPIDS H. These
include an object's location and its current state. Rules can refer to
these standard system attributes, as well as to attributes created by
authors.

A number of different types of actions can be carried out by rules.
A very common action is to assign a value to an attribute. In
addition, however, rules can change the location or rotation of
objects or of object states. This makes it possible to write rules that
change the appearance of an object to reflect some computed value.

In IMTS, objects with moveable parts had to be represented by
some fixed number of images of the states of that object. In
RAPIDS II, the moveable part can simply be moved or rotated by a
role when the values that control the object change. This permits
much more realistic simulations of continuous graphic changes,
while requiring less graphical authoring.

vii

Processes

Instructional
Control

Summary

In IMTS, a user event (such as throwing a simulated switch) would
lead to a number of simulation events that would propagate through
the simulation until no more rules needed to be activated. After the
simulation had settled, the user would be able to carry out another
action. In RAPIDS II, student users can manipulate the simulation
while it is active.

This feature of RAPIDS I1 makes it possible to write rules that set
up ongoing processes, such as incrementing or decrementing
attribute values. The appearances of objects can be made to reflect
these changing values, so that a simulation appears to be
continuously animated. This means that a simulation user can carry
out a series of interactions without waiting for all the effects of one
action to settle before carrying out the next one. (The smoothness
of the animation effects is dependent on the power of the delivery
platform employed. On Xerox 1108 and 1186 computers, the
animations wilt sometimes not appear very smooth.)

The combination of the new process and continuous appearance
features make it possible to create real-time task simulations in
RAPIDS I1, greatly extending the training domains that can
appropriately be attacked with this tool.

The lesson editing features of RAPIDS have been extended in
RAPIDS II to exploit the new real-time features of its simulation
composition system. Lesson authors can require that certain actions
be carried out before a given attribute attains a particular value, for
example.

In summary, RAPIDS II offers a number of advantages over the
original IMTS-RAPIDS combination. It permits the development of
simulation training for real-time tasks. It provides techniques for
including animations. It's authoring system permits a more flexible
approach to choosing the locality of effect of rules in a simulation,
while employing a more integrated approach to simulation
authoring than did IMTS. The top-level menu of authoring options
is much smaller and simpler in RAPIDS II than in IMTS/RAPIDS,
even though RAPIDS II offers greater power and flexibility to the
author.

viii

:::IAPILO_S II _rools

Simulation

Generic Editor

Scene Editor

Build Simulation

Run Simulation

Instruction

Content Editor

Plan Editor
|

Run Instruction

The Top-Level Menu of Authoring Options

RAPIDS II should prove to be an important milestone on the road
to a fuUy integrated system for authoring and delivering intelligent
simulation-based instruction.

i.x

Rapid Development
of Simulation-Based Instruction

RAPIDS II is a simulation-based ITS (intelligent tutoring system)
environment. Many other computer aided instruction systems provide tools or
programming language features that support the development of b.rief
simulation segments intermixed with other presentations. RAPIDS II ts a
system for producing computer-based training courses that are built on the
foundation of graphical simulations. RAPIDS II simulations can be animated.
They can have continuously updating elements. They can he small and
simple, or so large and complex that many screenfuls of graphics are
employed in a single simulation.

The simulation-based characteristic of RAPIDS II makes it very appropriate

for certain training tasks, but less appropriate for others. It is particularly
weU-suited for teaching people about the design, structure, maintenance, and
operation of complex devices. It is an appropriate medium for operator
training and for maintenance training..On the other hand, it is not designed for
the presentation of inherently discmmve materials. It would therefore be less
appropriate for developing courses about art or language, for example.

Because the instructional authoring system relies on the presence of a
comlmter-based simulation, its tools can exploit this simulation to permit very
quick authoring of computer-based instruction. This manual wtU teach you
how to use RAPIDS II to create simulations and to author training courses
based on those sinmlations.

RAPIDS II is the successor to RAPIDS and IMTS. If you are already familiar

with these tools, read the preface RAPIDS lI and Original RAPIDS, above.

1

RAPIDS H Authoring Manual _ August 1990 1. Rapid Developra_nt of Simulation-Based Instruction

Advantages for
the Student

Advantages for
the Author

Why RAPIDS !!?

RAPIDS stands for Rapid Prototyping/TS (Intelligent Tutoring System)
Development System. Because of its simulation-based style of authoring, it
encourages the rapid development of interactive instructional courses that take
advantage of computer graphic simulations.

RAPIDS II is the successor to the original RAPIDS authoring system, and it
.provides the same ease of authoring of instruction based on simulation. It also
incorporates an improved approach to authoring simulations, and supports
advanced simulation features, including ongoing processes. These features
make it possible to develop simulation-based computer graphics training
courses for real-rime tasks.

The most significant advantage of RAPIDS II for the student is that high-
quality computer-based courses can be developed that would have been too
expensive to create using conventional methods. This means that students can
benefit from the advantages of sell-paced adaptive interactive instruction in a
much wider range of courses than would otherwise be possible.

A second advantage for students is that RAPIDS II-built courses have a

number of features that improve the chances that the presented material is
correct. The simulations that underlie instruction must be self-consistent in

order to function; therefore, an instructional sequence built on these simulated
effects is guaranteed to present effects that actually work in the simulated
world. This approach can be contrasted with other instructional systems in
which it is possible to 'simulate' simply by displaying a canned sequence of
pictures.

A third advantage for students is that the RAPIDS II delivery system-has been
developed in such a way that students cannot easily be stranded by authors. If
a student cannot come up with the answer, the run-time software will get the
sttu_nt through that content item and on to the next one.

Quick Acqu_don of the Authoring Tools

_. of Developmentr of the Resulting Course

Quick Acquisition of the Authoring Tools. RAPIDS II authoring can
be learned quite quickly because it does not require programming language
skills. Development of course materials is carried out through the use of
menus and buttons in the editor windows, and by directly manipulating
graphic simulations in essentially the same ways that students do. This
straightforward authoring interface makes it possible to begin building useable
courses the first day that you are introduced to RAPIDS II (providing that the
simulation on which your course is to be based is already available to you).

2

RAPIDS H Authoring Manual _ August 1990 1. Rapid Development of Simulation-Based Instruction

Speed of Development. Courses can be developed very quickly (once
simulations have been built) because authoring is done largely by modeling
the desired student behavior. Authors create a content item by performing the

next action that is to be required of the student (and optionally by typing in
prompts and explanations). This direct manipulation approach to authoring
courses offers the potential for very high rates of productivity for course
developers.

Quality of the Resulting Course. Basing your course on an existing
simulation gives you opportunities for exploiting the work put into the
simulation in many ways. You can easily add instructional units that would be
too laborious to author by conventional means. In addition, many authoring
errors that can be made with other computer-based instruction systems axe
Likely to be avoided

Overview of Course Authoring

There are two stages to RAPIDS II course authoring. They are simulation
construction and course building. Simulation authoring has two major
components, object editing and scene editing. Simulation authoring must be
complete before course building is undertaken. Course building also has two
components, content authoring and instructional organization authoring. The
instructional plan and content may be authored in any order. It is common for
these two authoring phases to proceed in tandem.

I ObjectEditing I

JEditing

t

Instructional [[
organization co. tAuthoring

Authcxing

Course)

Simulation
Construction
and Testing

Course
Building and

Testing

RAPIDS IIAuthoring Manual_ August 1990 I.RapidDevelopmentof Si#udation-Based Instruction

A good partofthetechnicalliteratureon coursedevelopmentpresupposesthat

all!nstructionalplan_"g precedesallcoursedevelopment.While RAPIDS II
maces itpossibletodevelopcoursesinthisway, itdoes not requirethatthe
authordo so.We believethatitisusuallya good ideato begin courseware
development with a good instructionalplan,but we have found thatthe

processofdevelopingcontentofteninformstheplanningprocess.An iterative
approach may thereforeprove tobe themost effectiveone formany course
developmentprojects.

Simulation construction, which is described in detail in Chapters 3 - 5, is
carried out using direct manipulation. A simulation author builds a simulation
largely by drawing it. Content authoring is performed in a similarly direct
fashion. To build a content item, you type in explanatory texts and student
prompts, and you then carry out the action that you want students to perform,
using the previously authored simulation. Instructional organization authoring
means the construction of a hierarchical plan. The plan is shown as a tree
structure, where the terminal nodes are content units. Once again, you will
use direct manipulation techniques to build this part of your course, the
instructional organization.

The next three sections of this chapter present brief overviews of these three
aspectsof RAPIDS IIcourse authoring:simulationcomposition,content
authoring, and instructional plan building.

Modeling at the
Element Level

Propagstion of
Effect

Simulation Composition

Simulationcompositionispresentedinsome detailinChapters3 -5.Inthis
sectionwe presentonlya conceptualoverview of theRAPIDS IIsimulation
compositionsystem.

The elements, or objects, used in RAPIDS II simulations can be produced by
non-programmers, and they can be saved and used in any number of specific
applications. This contrasts with some other approaches to simulation
composition, such asthatemployed inSTEAMER (Hollan,1983;HoLIan&

Hutchins, 1984), in which the simulated device is modelled with a specially
written computer program. (STEAMER's graphical indicators -- such as
_ff.fereaUgesand indicator fights m are generic elements that can be used at

nt points in a simulation, or in different simulations.) The RAPIDS II
approach has the advantage of permitting faster and easier simulation
development, for the class of systems that can be simulated in this manner.

Some objects in RAPIDS II simulations are directly manipulable. Students
click the mouse on points called handles to change the states of those objects.
(State changes in an object are usually accompanied by changes in
appearance.) Changing an object's state will typically activate one or more
rules associated with the object. Activation of these rules will cause the values
of certain attributes to be changed.

RAPIDS 1I Authoring Manual _ August 1990 1. Rapid Development of Simulation-Based Instruction

A Simple
Simulation

When a student changes the state of a simulated control object, the object's
rules determine new values for some or all of its attribmes. These values are

referred to by the rules of neighboring objects, some of which may change
state as a result of the activation of their rules. These neighboring objects may
also have attributes that change as a result of the activation of their rules.
These changes wLL1,in turn, result in the activation of rules associated with
other objects. In a complex simulation, hundreds of objects may be affected
by a single manipulation, and thousands of attribute values may be
recomputed.

Complex system-level behaviors are derived from simpler component-level
behaviors. This permits accurate free-play simulations without requiring
authoring an immense number of combinatorial effects (as did an earlier
simulation training system developed by this research group, described in
Towne, 1986; Towne & Munro, 1981; and Towne, Munro, Johnson &
Lahey, 1983).

To minimize simulation development time and effort, authors should be able
to build simulations largely by drawing them. To the extent possible,
authoring should be direct and concrete, rather than indirect and abstract
(Norman & Draper, 1986).

A simulation is composed of instances of generic objects. Below is a simple
simulation of a Rube Goldberg machine that uses electrical, hydraulic, and
mechanical components to turn a Light on and off. Power Supply A provides
power to an electrically operated control valve, while Power Supply B
provides power to the Output Light.

When the user moves the Main Power Switch to the fight, the valve is put in
its crossed position. This directs hydraulic pressure to the mechanical
Actuator (at the fight in the diagram), causing it to extend. The actuator
pushes a contact closed, and electrical power turns on the Output Light.

Valve

I -,1
I I Pwr_ "a_m

/ /
o ,p t

Maln Pj_ Swhdt .,_L|ght

Pwr SupplyA

RAPIDS I! Authoring Manual _ August 1990 l. Rapid Development of Simulation-Based Instruction

If a user moves the switch to the left, the valve goes into its straight state and
the actuator is retracted. The contact below opens, and the Output light goes
out. All these responses are produced in accord with the behavior rules stored
with each generic object.

Valve m

Simulation
Authoring

Pump

Ma{n

PwrSupplyA

In addition to manipulating controls and observing simulated front panel
indicators and internal actions of objects, students can examine values at
object ports using simulated test equipment. When they work with large
simulations, students sometimes discover things about the behavior of
simulated worlds that even the authors were not aware of.

Building a RAPIDS II simulation consists of composing diagrams from a
library of generic objects. Authors can build very large simulations by
dividing the target system into a number of subsections, called scenes, that
can be displayed in their entkety in the main simulation window. Simulation
effects propagate from one scene to the next through connections identified by
the author.

When the scenes of the ftmctional model are completed the author may interact
with the simulated system to check out its system behaviors. These
interactions may include setting switches, inserting one or more failures,
observing indicator readings, and using test equipment at test points.

As sketched in the diagram below, the author may go on to produce additional
scenes that represent the target system in simplified ways, or in more
physical less schematic forms.

RAPIDS H Authoring Manual _ August 1990 1. Rapid Developmtnt of Simulation-Bo_md lnstruction

Simplified or Physical Models

S1 S2

_ o

Detailed Functional Model

51

o $2

KlO!

2-Position S_vitoh

__--;_
Relau Contact Set Relaw Coil

Three Levels of Representation in Composed Simulations

RAPIDS !I Authoring Manual I August 1990 I. Rapid Development of Simulcaion.Bused Instruction

Authoring Instructional Content

New

The RAPIDS lI instructional content editor gives you an environment that
includes a live simulation. The figure below shows a simulation of an engine
starting system. Instructional content based on this simulation can be
developed using RAPIDS II, in part by manipulating the simulation in the
same way that a student would.

View Done Save]Exit

Edit Move Delete

I_trockJcgtol_ to Peril

I)lyePter Velve IhgIreCgtOftO
Left EnglrHI Iger¢ Off eroun4

Right (ngtne StM'¢ on (k'o_m4

The above figure shows the RAPIDS II content unit editor in use, being used
to build a set of content units based on a simulation of an aircraft engine
starting system.

Content Units A content unit consists of a group of related content items, and may optionally
include preceding and/or following expository material. In the figure above,
each of the lines in the window tided 'Content Units' names a content unit that
has been def'med. 'Inlzoduction to Parts' is one such content unit, 'Diverter
Valve Interactions' is another, and so on.

8

ORIGINAL PAGE IS
OF POOR' QUALITY

RAPIDS H Authoring Manual _ August 1990 l. Rapid Developnumt of Simulation-Based Instruction

Content Items

In addition to having one or more content items and pre- and post-expositions
(explanatory presentations), a content unit has an associated system
configuration. This is a stored state of the simulation. During training, the
RAPIDS II run-time software restores the simulation to this state before the

f'fist content item of the unit is presented. This ensures that students will
always perform the actions of a content unit in the same simulated
environment in which they were authored.

A content item is a general-purpose element that handles the presentation of
one small chunk of information to the learner, through a combination of text
and RAPIDS II graphics, and that requires a response from the student.
According to the way an item is authored it can serve to present technical
theory, to acquaint a learner with the topology of a front panel, or to instruct
in the performance of some action.

A content item, like the larger content unit to which it belongs, may have a
preceding or trailing exposition. It always has a prompt, which serves to label
the associated student action. Finally, it includes a required student action.

Content items present the bulk of instructional content. An item consists of:

• exposition (text, video, and/or graphics) to be presented before the action:
• exposition to be presented after the action:
• identifying text that identifies the subject of the action
• a specification of the correct student action

The before.the-action exposition is a combination of text and graphics that
explains, describes, or illustrates a single item to be learned. The text is
authored by the subject matter expert as s/he manipulates the simulation
graphics. The student sees the identical text and graphics during the learning
presentation. The exposition may highlight associated areas on the graphic
simulation, and it may display video disc images.

The after-action exposition has identical capabilities as the before-action
exposition. Typically, it might point out and explain important effects of the
action (either by the student or the expert) and it might summarize what
important points should have been learned by doing the item.

The text in expositions may be presented in a standard text window at the side
of the simulation graphics or it may be positioned on the graphic simulation to
relate closely to particular parts of the device representation.

The identifying text of an item describes the expected student response. In
certain modes, it is used to prompt the student to respond. In a front-panel
drill, one item might be to locate the Standby switch. The identifying text
would be

Standby switch
The training system would use this text to compose the prompt

locate the Standby switch.
In this example, the correct response would be to click in the region of the
switch on the graphical scene.

9

RAPIDS !! Authoring Manual _ August 1990 I. Rapid Dcvelopr_nt of Simulation-Based Instruction

Student Actlons

Expositions

A student action is a specification of what the student is expected to do in
orderto successfullycomplete thecontentitem.(So that,forexample, the
next content item can bc delivered.) The specification of a student action may
consist of

• clicking on one or more objects on a scene or scenes of the simulation
• manipulating one or more switches into specified states
• clicking in one or more regions on a scene or scenes
• make one or more selections from a menu of text items

The last of these options provides a mechanism for specifying multiple choice
questions and answers. The simple click-on-the-menu-item user interface
provides a straightforward implementation that does not require any special
authoring.

Student actions axe assumed to be the fundamental units of RAPIDS II

authoring. They axe the most important components of content items.
RAPIDS II provides very direct methods for authoring the required actions of
a simulation-based course.

The RAPIDS II content unit editor makes it possible to build expositions,
which are used to produce explanations, admonitions, and other presentations
for students. An exposition consists of a sequence of exposition elements.
There axe a number of distinct types of exposition elements that are supported
in the content unit editor. These include

• presenting text in the message window
• clearing the message window
• playing a videodisc segment
• highlighting an object in the simulation window
• highlighting a region in the simulation window
• changing the scene displayed
• waiting for a student click
• waiting a specified amount of time
• presenting text in afloating window

Floating windows are a special exposition feature that makes it possible for
authors to opma, shape, and position windows that overly the simulation
window. Authors can specify what text should appear in these windows, and
can clear and close them as well

IO

RAPIDS II Authoring Manual _ August 1990 I.Rapid Development of Simulation-Based Instruction

The exposition editor generates a script of
exposition events, which appears in the
window to the left of the simulation
window. In the figure shown at the right,
an exposition script with six events is
displayed. The first of these is a text
event -- it will have the effect of

presenting the authored text in the
message window. The second and third
events shape and open a floating
window.

Any exposition event in a script can be
selected by the author, and the selected
event is highlighted in the script. Selected
events can be deleted, edited, or moved to

a new position in the script. The next
chapter presents examples of expositions
as they appear to the students.

View Done Save Exit

RAPIDS AUTHORING 0

Add Done Move
Edit Delete Run

Text:livery $ourco of electrical pouer oust

Be routed Lhrough the C_QII-ILIrt relay --->

[elg:
[hlfe Ire fQUr IOUI'OII of tle¢_.rtCl| power.

YOU vtll nov _ _lr,04 _.o potn_, to each of th
|t 111 tUrlt.

Floll¢lnl-41111ml: rooh4lpe: (88 t75 175 112)

Fllml_tlll-411m! open vtn4ov

As you will see when you develop courses, the set of authoring choices in
RAPIDS II is quite constrained. This constrained instructional syntax makes it
possible for RAPIDS II to automatically generate a good deal of rich
semantics for the simulation-based instruction. This approach has three

advantages:

1 Authoring is largely dh-ect and not symbolic
2 There can be no 'programming bugs' in authored instruction
3 Presentation quality is typically very high

Developing an Instructional Organization

A course's instructional organization or instructional plan is used to determine
the order that content units will be presented to students, and whether a

particular student will be presented with certain content units at all. The
instructional plan of a course is its highest level component. The lowest level
elements in such a plan are the content units described above.

RAPIDS II provides a special tool for creating and editing instructional plans
for courses, called the instructional plan editor. The window below shows a
plan for a simple course about an engine starter system. Plans are organized

11

ORIGH_IAL PAGE IS

OF POOR QUAL/TY

RAPIDS !! Authoring Manual _ August 1990 1. Rapid Development of Simulation-Based Instruction

as tree structures, with the root of the tree at the left. The editor is used to add,
delete, move, and edit the nodes that make up the tree.

Ex|t

_ale

_41vo tO ilia: IC/tiJL/e_IAKII:JK
Savtng...done.

Structure of
Instructional Plan
Units

In the tree shown above, the instructional plan calls for three major
components. Students will first learn about the device organization, then be
introduced to operations, and finally be drilled on operations. The nodes that
represent these sections of the course are called organizational units, in
contrast to the content units described in the previous section. Content units
include the subject matter to be delivered. Organizational units serve to group
related content units or other organizational units. In the tree displayed by the
instructional plan editor, organizational unit nodes have solid borders and
content unit nodes have dashed borders.

The window shown below the tree window displays data about the currently
selected node. The data can be edited in this window. In this example, the
organizational unit called 'Operation Drill' has been selected, and the data
shown in the lower window pertain to it.

An organizational unit lists other units to be presented. The member units may
be content units or other organizational units. Associated with each unit called
in a plan are these data fields:

• weight:

• mode:

• condition:

the importance of the called unit (relative to the others in
the list)
whether to execute a called content unit in Instruct, Drill,
orTestmode

an optional expression that controls whether to present the
urtit

12

ORIGINAL PAGE IS
OF POOR (_KJAL.I'T'Y

RAPIDS H Authoring Manual _ August 1990 1 Rapid Development o/Simulation-Based Instruction

• maximum:
• _:

• l_rf_:

• ac_y:

speed:

the maximum number of times to present the unit
the minimum number of times to present the unit
the time limit for the unit, in minutes
the accuracy score (%) required to complete the content
unit successfully
the speed score required to complete the content unit
successfully, in minutes

Certain of these fields apply only to content units. The mode, accuracy, and
speed fields have undefined values for organizational units. The data fields
used to control the presentation of organizational units are condition,
maximum, minimum, and limit. Accuracy scores for organizational units are
computed and returned, however.

Here is a fuller description of the uses of instructional unit fields:

Weight. The least important unit in a parent unit should be assigned a weight
of 1. The others should be assigned integer values of 1 or more to reflect their
relative importance. The composite score of student proficiency on the parent
unit is the weighted average of the proficiency scores (%'s) of the member
units.

Mode. This is only meaningful when a unit is calling a content unit. In this
case the mode determines whether the items in the content unit axe presented
in Instruct, Drill, or Test mode.

Condition. This is an optional Boolean expression that is used to determine
whether it would be appropriate to present this portion of the RAPIDS lI
come. A condition is evaluated prior to each presentation of its associated
unit. If the condition evaluates to true, then the unit is performed.

A simple example is
Accuracy of DKU3 < 65

which evaluates to mac ff the accuracy score on unit Drill3 was less than 65%.
A more complex example is

((Accuracy of Drill3 < 65) and (Speed of DriU3 > 5)) or (Performances
of Drill3 < 3)

This condition specifies that a unit will be performed if the student's accuracy
and speed were poor on unit Drill3 or if it was presented less than 3 times.

A condition can refer to the following measures for the current unit or for any
other unit in the course:

- the number of presentations of the unit
- whether the unit was successfully completed
- the total time spent by the student in the unit, on all repetitions
- the latest speed score
- the latest accuracy score, if any

If the unit has not been presented, then speed score is infinite and accuracy
score is O.

Authors don't need to learn the names that are used to refer to these unit data

(accuracy, speed, number of presentations, and so on), because conditions

13

RAPIDS II Authoring Manual _ August 1990 1. Rapid Devtlopm_nt of Simulation-Based Instruction

are composed by making menu selections. The process is described in
Chapter 4.

Maximum. This specifies the most times a unit will be repeated in a row, in
an attempt to achieve the proficiency criteria. This would be set to a very high
number (or left unspecified) ff the planner wishes to repeat until time runs out
or un_ the student meets the performance criterion.

Minimum. This field specifies the fewest times a unit will be repeated in a
row. This is usually set to I, however some planners might wish to repeat a
unit some number of times, regardless of the student's performance.

Limit. This is the most time (expressed in minutes) that will be allocated to
the called unit.

Accuracy. The accuracy score required to complete a content unit, expressed
as a percentage.

Speed. The speed score required to complete a content unit, expressed in
minutes.

Installation Steps

Installing RAPIDS !1

This chapter has briefly exposed you to the major concepts that underlie
RAPIDS II. In Chapter 2, you will learn what a RAPIDS II course looks like
to a student as it is presented. Chapter 3 will show you how to create and edit
generic objects using the generic editor. Chapter 4 describes rule editing.
Chapter 5 covers scene authoring and simulation-building. Chapter 6 deals
with authoring instructional content, while Chapter 7 treats course
organization. Chapter 8 briefly presents the instructor utilities. In order to
carry out the examples presented in the manual (and in order to develop your
own courses), you nmst install the RAPIDS II system on your computer.

I Create a clean partition.

2 Using the Filebrowser, copy all of the fries on the release floppies onto a
new hard disk subdirectory called RAPIDSII; i.e.,

{DSK }<LISPFILES>RAPIDSII>

(DV DIRECTORIES)
Edit your Directories variable so that it includes

{DSK}<LISPFILES>RAPIDSII>
{ DSK } <LISPHLES> LIB RAR Y >
{DSK}<LISPHLES>LISPUSERS>
{FLOPPY}
{DSK}

14

RAPIDS IIAuthoringManual _ August1990 I.RapidDevelopmLntofSimulation-BasedInstruction

4 Note: The RAPIDS II release includes a new set of simulation
tools. RAPIDS II will not work with original IMTS.

5 (CNDIR '{DSK}<LISPFILES>RAPIDSII>)

6 (FILESLOAD RAPIDS-IIMENU GEREAL SEREAL INST INST-CUE
INST-PLAN SIM-STUDENT)
(When building a student environment in which no course editing will take
place, you can simply call (FILESLOAD INST SIM-STUDENT).

The above FILESLOAD command will take quite some time to be completed,
because it loads all the functions that are needed by all of the simulation and
instruction editors. At the end of the load, the RAPIDS II Tools Menu will

appear on your screen. (See the figure on the next page.)

Build a
Simulation

In order to begin working on a course, you will also have to build the
simulation on which the course depends. Chapters 3 - 5 describe how to build
a simulation in your environment.

To begin with, you might like to build the EngineStarter simulation that is
used in the examples in this manual. You can build this simulation by typing
this command inan execwindow:

(BuildRapidsSimulation 'NEWSTARTER 'ENGINESTARTER)
or by using the Build Simulation button on the RAPIDS II main menu.

IAPlDS II Tools

Simulation

Generic Editor

Sc, ne Editor

Build Simulation

Run Simulation

Instruction

Content Editor

Plan Editor

Run Instruction

After a short delay, the simulation will be built and you will be able to carry
out most of this manual's examples in your own environment.

15

RAPIDS H Authoring Manual _ August 1990 1. Rapid Development of Simulation.Based lnstructior

Using this Manual

We recommend that you at least skim this entire manual before attempting to
build your f'ust RAPIDS II course. Implement the examples on your own
machine as you read, so that you will become familiar with RAPIDS II
authoring features in a simple training environment. You should not start
building your own course until you are comfortable with these examples.

Make certain that your simulation is working correctly before you attempt to
build a RAPIDS II course using it. Your course may not work correctly if you
make changes to your simulation after you have authored the course.

16

2
The RAPIDS II Student Interface

To create a RAPIDS II course, you must first load the RAPIDS II authoring
and instructional environment, as described in Chapter 1. Three steps are then
required to build a course:

• Create a device simulation
° Build content units m instructional materials based on the simulation

• Make an instructional plan that will control presentation of the content

When all three steps have been completed, a course is available for students.
Every course must have a simulation, instructional content, and an
instructional organization or plan. The simulation must be created before the
instructional content and the plan. Content and plans, however, may be
developed in any order. Authors often alternate between plan and content
authoring.

Your release of RAPIDS II includes a small course on a jet engine starting
system. You can run this course, but first its simulation must be built in your
environment. To build the simulation, you must first instal RAPIDS II as
described in Chapter 1, and then use the Build Simulation command:

Mapr-Ue: NEWSTARTER

Simulation Instruction

Generic Editor

Scene Editor

Build Simulation

Run Simulation

Content Editor
mmm

Plan Editor

Run Instruction

17

RAPIDS II Authoring Manual _ August 1990 2. The RAPIDS I1 Student Interface

Some time will be required to build the simulation. At the end, a message will
appear saying that the simulation has been built.

The figure below shows the RAPIDS II student interface. You can bring up
this course display by running the simple course on your computer. Click on
the Run Instruction option in the RAPIDS H Tools menu (see above). A
numeric keypad will appear on your screen. Click on the "0" key and then on
"ok" on the keypad. You will be asked what course you want to run. Type
ENGINESTARTER. A display similar to the one shown below will appear.
A menu to the right of the Voltmeter asks whether you want to "Start next
unit." Click on that command, and you will see the display shown below.

right. Not=, the names of tile I/mnwtts, snd
try to undlrltluxl the flow of power
through the myltmm.
Clck anywhoro to continue.

Kin Kin

© .. ©

As is appropriate in a simulation-based training system, the largest window in
the student environment presents a graphical view of a simulation. The
window to its immediate left is a message window, in which text and
instruction created by the author and, in some eases, by the RAPIDS II
instructional environment itself, are presented. Above the simulation window
are a small window for simulated test equipment and a larger window that
serves as an object scratchpad. The object scratchpad is an area into which

18

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS H Authoring Manual _ August 1990 2. The RAPIDS II Student Interface

authors may place small windows that view parts of other scenes in the
simulation.

The buttons in the top left corner show student controls that are usually
available in the RAPIDS II student environment. These button controls are
used to carry out recta-simulation activities. Students can also directly
manipulate controls in the simulation, if the course they are using permits this.
They can also point to objects and regions of interest on the screen, and they
can make multiple-choice text responses using menus. None of the student
actions requires the use of a keyboard.

In the next section you will see examples of a number of different styles of
student-course interaction. Note that in all of them, student interaction always
involves some type of pointing response, rather than typing.

In the last chapter, you learned in the abstract about the structure of courses,
content units, content items, student actions, and expositions. That is, you
learned something about what kinds of data are associated with each of these
constructs in RAPIDS II. In this chapter, you will see how these constructs
appear to student users. In the next two chapters, you will learn how to use
the RAPIDS II editors to create and edit your own courses, content units,
content items, student actions, and expositions.

About the
EngineStarter
Course

Examples of Content Presentation

An easy way to learn about the student interface is to work through the simple
course that is distributed with RAPIDS II. As you work through the sample
EngineStarter course, you will see the actual appearances of a number of
different types of content unit items. In this section of this chapter, a few of
these presentation types are displayed and discussed.

The EngineStarter course is presented here only as a simple example of
RAPIDS II course development, not as an exemplar of a complete course
meant for actual use. The simulation is adapted from a training system
developed by Kieras (1988). The details of the EngineStarter simulation are
not important for learning about RAPIDS II, but a simple explanation of the
functions of the system may help you to follow the examples. See the picture
on the next page.

EngineStarter is a simulation of an aircraft engine starting system. When such
a system is on the ground, it is hooked up to an external source of electrical
and hydraulic power. Once engines have been started, this power is
disconnected. In a typical on-the-ground startup sequence, one engine is
started (using an engine start button) using the external power. The live
engine drives a generator, which provides power for starting the second
engine.

19

RAPIDS H Authoring Manual -- August 1990 2. Th_ RAPIDS 1I Student Interface

'...... m-_""t-"_'S'_art Button Right 8tart Button

' '1 Igniter I f _ivt_ _" Ignker i_

I- Io-°--m o-°-,-,o,m L_

Object
Oesignatlon

If one engine goes out in the air, it is possible to restart it using the power
provided by the other engine's generator. If both engines die in the air, an
en_rgency power switch is closed to route power from a 24-volt on-board
battery. In this case, the left throttle is used, rather than the left start button, to
perform the actual engine start.

In the actual aircraft, a timer opens a circuit after an engine igniter has fgred
long enough to start an engine. This effect is accurately simulated in RAPIDS
lI.

The first content unit begins with a text exposition about the schematic of the
EngineStarter system and then asks the student to identify four objects on the
scene. As in the figure below, the message window directs the student to click
on a named object.

20

OF POO_ _JALITY

RAPIDS 11Authoring Manual m August 1990 2. The RAPIDS H Student Interface

Fkw:l the c4-oss-start r_ay

_r
|

©

J

,_ _ t

""j I

l"_= l

rmw' I_1_| Trlmm

a.,. i-"-_r_ Rec

K1

O

Try answering one or more of these questions incorrectly. Students are
automatically remediated when they make an incorrect object selection. When
a content unit is being played in Drill mode, RAPIDS II tells the student the
name of the object that was selected and asks that he try again. After the
second error, RAPIDS II again" describes the error and then highlights the
object that should have been selected, as in the figure below.

21

RAPIDSII AuthoringManualw August 1990 2. The RAPIDS 1I Student Interface

Requlred Swltch
Settings

Here the student f'u'st clicked on the air diverter valve, rather than on the cross
start relay. RAPIDS II described the error and asked the student to try again.
Then he or she chose the right actuator motor. At this point, the relay was
highlighted to show the student what should have been selected.

As soon as the s_lent follows the directive to "Click anywhere to continue,"
the highlighting will be removed and the lesson will continue with the next
content item.

The presentation order of the four items of this small content unit has been
specified as random, so you can expect to see the items in different orders if
you repeat the unit.

Content items can require that students change the position of a switch or
other control. When the student performs the required action, the simulation is
activated and all the normal effects of the action are propagated.

In the figure below, a student was asked to put the left start button into the
pressed position. A number of simulation effects were propagated, including
a change in the position of the diverter valve, the fli-ing of the left igniter, and

22

OEIGltqAL PAGE I$
OF POOR (_M.JA_

RAPIDS H Authoring Manual -- August 1990 2. Th_ RAPIDS II Student Interface

the starting of the left engine. The external power line to the aircraft was also
automatically disconnected, and the right generator warning light came on.

QtJIt Don't Know

Test Equlpmenl

If a student attempts to manipulate the wrong control, the manipulation does
not result in propagated simulation effects, and the control is reset to its
former position. RAPIDS II automatically presents error feedback to the
student in the message window. If the student makes another error, RAPIDS
II gives textual feedback again, and then performs the switch setting itself,
graphically highlighting the switch. These responses to incorrect student
actions do not have to be authored. The RAPIDS II run time environment

handles most aspects of evaluating and responding to student actions without
the need for explicit authoring of those responses by the author.

23

C_*_+Y+...... v'+

0£ P.OOR '_J_.LtT","

RAPIDS H Authoring Manual _ August 1990 2. Th_ RAPIDS II Student Interface

_imulation Window

The simplest engine starting operation is
starting the left engine when the aircraft is
on the ground. The rlormsJ way to start
this engine is to prmm the left engine start
button.
Put the Left 8tart Button into the Pressed
position.

Try again.
You set the Left Throttle, which was the
wrong switch.

You set the Left Timer, which was the
wrong switch.

The Left Start Sutton w=ll now be set to
Pressed.

Click anywhere to continue.

 oo-
I r
il L

b

I External IPower I

Emphasis In
Authored
Presentations

Authors have a number of tools available for emphasizing elements in the
simulation during instruction These include

• Highlighting one or more objects
• Highlighting an entire rectangular region
• Opening scratchpad windows onto other scenes
• Changing scenes
• Creating floating text windows

In the figure below, a floating text window has been opened near the cross
start relay to make a point about that element of the system.

24

ORIGINAL PAGE IS

OF POOR QUAUTY

RAPIDS H Authoring Manual _ August 1990 2. The RAPIDS I1 Student Interface

Thw'l arm four sources of oleGtHc, al powm',

You will now be stdced to point to e&Gh of

them In turn.

Multiple-Choice

Text Responses

Although RAPIDS II is particularly well-suited for authoring student
interactions based on graphical direct manipulation responses (such as object
selection and switch manipulations), it can also be used to prepare and present
text choices to students.

These choices are presented in menu form. Authors can specify which
answers are correct. Students choose START OVER if they accidentally make

a choice they don't want. Once their menu selections are complete, they click
on NO MORE ANSWERS.

25

OF' po(3_ Q_2_.i'_";

RAPIDS H Authoring Manual -- August 1990 2. The RAPIDS !I Student Interface

normal start of tha left en(j_ne?

Multiple-choice questions can be created that have only one correct answer, or
that have a number of correct responses. As the student makes choices, the
text of the menu items selected appears in the message window, to the left of
the simulation window. If a student makes an error, RAPIDS II automatically
provides information about the error and the choice that should have been
made, as is shown below.

Here the student chooses 'Left Start
Button' and 'Left Throttle' from the
menu, and those choices are shown in
the message window.

After 'NO MORE ANSWERS' has been

selected, the message window evaluates
all the responses that were made. The
student can try again, and RAPIDS II
will evaluate the second attempt. If the
student fails again, the set of correct
answers is presented.

What am the two controde used to pecform

• normal start ot the imft enQInm?

Left 8tlwt 6utton
Left ThrotUl

The felovdng relation that you mmd_was
¢mrlICt:

Lift Start Button

The folovdng _tlm thst you nmdmwas
Inoommt:
Left Throt_

The col_lot _ loll:.

] Left 8tart 6utt_

j Left Tlmm.8vdtch

I Ci_ enywhere to oonUnum.

26

ORIGINAL, FA_ _S

OF POOR Q_I.IALITY

RAPIDS II Authoring Manual --August 1990 2. The RAPIDS 11Student Interface

Other Student
Actions

Authors can also create content units that call for other types of student
actions, such as making indicator observations, taking test equipment
readings, and replacing objects. These types of student actions are frequently
used in constructing troubleshooting courses. As with the types of required
student responses described above, corrective feedback is generated
automatically when the student makes an error.

View

The Options Menu

The Options Menu has two or three items: Quit, Don't Know, and View
(which appears if there is more than one scene in the simulation). The Quit
command lets a student stop a training session. If a student chooses Don't
Know, the message window will display the correct answer and will ask the
student to click the mouse to continue the training session. If appropriate,
objects or regions in the simulation window will be highlighted to clarify the
supplied answer. Items that the student responds to with Don't Know are
scored as errors by the RAPIDS II scoring mechanism.

If the simulation used in a RAPIDS II course has more than one scene, then

the Options Menu will include a third item, View. This command brings up a
tree of scenes in the simulation. Clicking on one of these names brings that
scene into the simulation window.

27

RAPIDSHAuthoringManual_ August 1990 2. The RAPIDS H Student Interface

Instruct Mode

Drill Mode

Test Mode

Modes of Instruction

Content units may be delivered in any of three modes: instruct mode, drill
mode, and test mode. The examples of content item interactions presented
above are all based on d_611mode.

Instruct mode is not
very demanding of the
student. In this mode, a
content unit's pre-
exposition is presented.
Then, for each item,
RAPIDS II presents the
item's pre-exposition (if
one exists) and its
identifying text. The
student must then click
the mouse, but need not
perform the identified
student action. RAPIDS
II carries out the student
action. Then post-
exposition is presented.
See the example at the
right.

The student's task in
instruct mode is simply
to pace the presentation
of text and graphics by
clicking the mouse.

Do you want to start the next topic?
The simplest engine starting operation is
starting the left engine when the aircraft is
on the _round. The normal way to start
this engine is to press the left engine start
button.
We will put the Left Start Button into the
Pressed position.

Click anywhere to continue.

Mote that the dlverter valve is positioned
to channel air to the left engine and the
igniter is powered.
When an engine is started in the actual
aircraft, the timer opens the circuit that
powers the igniter after enough time has
passed to start the engirm. In order to
make the sequence of events clear, this
timer effect is not performed automatically
in this simulation. You must change the
ganged switch in the timer by clicking on it.
We will put the Left Timer into the Open
position.

Click anywhere to continue.

In drill mode, expositions and identifying texts are presented, as in instruct
mode. In this mode, however, the student must actually perform the action
described by the identifying text. Performing any other action results in the
presentation of generated corrective feedback, as shown in the examples of
the previous section.

For many training tasks for which RAPIDS II is an appropriate development
and delivery system, drill mode is likely to prove the most useful mode of
instruction.

In test mode, pre- and post-expositions are not presented. Identifying text
may or may not be presented, at the discretion of the content unit author. In
response to each identifying text, the staxlent must perform the identified task.
As in drill mode, corrective feedback is generated in response to student
mistakes. In test mode, however, the corrective feedback does not discuss
what action the student actually took. Instead, it simply indicates the correct
action.

28

3

Building Generic Objects

Appearances

The Role of Generic Objects

Generic objects are the prototypes for specific objects that appear in RAPIDS-
II simulation scenes. Generic objects store object appearances and may
contain much of the specification of object behavior as well. (In unusual
ch'curnstances,generic objects may contaLnno graphics or no behavior. These
special cases are discussed later in this chapter.)

Generic objects are created and edited using the Generic Editor. It can be used
to draw the appearances of objects and to open_ the RAPIDS-II rule editor for
describing object behavior.

The appearance of an object is determined by its object graphics and its state
graphics. The object graphics part is always the same, no matter what the
object's state. The state graphics change depending on the state of the object.

Consider the sequence valve shown below. When pressure at the top port on
the valve is greater than pressure at the bottom port, then the plunger in the
valve is pushed to the left and pressure can pass through the valve from top to
bottom ports. This state of the valve is depicted on the left. When pressure is
greater at the bottom port of the valve, then the plunger is extended and
pressure cannot be passed from the lower port to the upper one.

No matter what state the sequence valve is in, a portion of its appearance is
unchanged. That portion is the object graphics of the valve, shown below.

29

RAPIDSII Authoring Manual _ August 1990 3. Building Generic Objects

State Graphics

Alternative
States or
Continuous?

Gsnerlo Behavior
Rules

You will create the object graphics of objects using the generic editor's
Object Graphics command and a drawing palette, which is described
below in this chapter.

State graphics can change in either of two ways. A state part can vary
continuously, by being moved or rotated with respect to the static part.
Alternatively, a state can be replaced in its entirety by a different state for that
object. Whether you want a particular object's appearances to be handled by a
continuous state or by alternative state graphics is your decision. For many
objects, either approach will work fairly well.

If you choose the alternative State graphics approach, you will draw the object
graphics and each state graphic alternative. You will give each state a name
that corresponds to its appearance. (In the case of the sequence valve, you
will create the second state by copying the appearance of the first state and
dragging the state graphics to a new position.)

Open Closed

If you choose the continuous graphics approach, you will draw the object
graphics and one state. You will then write a behavior rule that describes how
the state graphics should be moved or rotated to reflect attribute values.
Creating and editing rules is described later in this chapter. When you choose
the continuous graphics approach, the position (or rotation) of the state part is
computed during the simulation process.

Depending on computed values, a state may be shown at any intermediate
position, as in in the figure above.

Continuous state graphics make sense ff a simulation is computing attribute
values that can be used to determine the position or rotation of the changeable
part of an object. In some simulations, you may be able to achieve quite
smooth animation effects without having to specify all the intermediate
positions (or rotations) of an object's states.

If an object changes its shape (by deforming or taking on a very different
appearance), rather than merely repositioning or rotating some part, then you
must use the approach of separately drawing and naming the different state
appearances.

The rules of a generic object can refer only to attributes of that object, not to
the atu'ibutes of any other objects. These are the prototypes for a specific
object's internal rules. In many simulations, most of the 'behavior' derives
from such generic object rules. In these simulations, the external rules of a
simulation scene are used primarily to link specific objects together.

30

RAPIDS II Authoring Manual _ August 1990 3. Building Generic Objects

Starting the
Generic Editor

Using the Generic Editor

There are 2 different ways to start the generic editor. The normal way is to
start the editor using the RAPIDS-II menu. The top menu item in the
Simulation menu is Generic Editor.

_APIDS II Tool3

Simulation Instruction

Generic Editor

Sc, nI Editor

Build Simulation

Run Simulation

Content Editor

Plan Editor

Run Instruction

When you click on this button, a dialog box will appear that will ask you for
the name of the library of generic objects (the Generic File) that should be
edited. Click on Generic File, then type in the file name, then click on the OK
button. (If you want to convert an old IMTS library to RAPIDS II data, then
change the IMTS File? field in the dialog box to T before clicking on OK.)

GenerkFile: ENGINESTARTEI_

• (The second way to invoke the generic editor is to call the
GenericEdReai func'don by typing

(GenericEdReN 'UbraryName)
in an Exec window.)

When the generic editor has been successfully started, you will see a set of
windows that look like those shown below.

31

RAPIDS II A_thoring Manual _ Au&u._t 1990 3.BuildingGenLricObject

oMect:

3m_ngava Ivu

Sta_

Gluml

Add Hew Object

Copy

Cycle

Delete

Object Attributes

Object Graphics

Object Handles

uove

Rename

Rotate

Rules

8c81e

Move to Pe|e

Copy to Plkt

0

O

0-..6

Bli

8ehav;oraiTechnoloc Ldbordtorie

The long shallow window at the top of this editor is the message window. In
addition to displaying messages relevant to the editor tools you choose, this
window displays prompts for data, such as object names, that must be typed.
Your typed responses appear in this window during these interactions with
the editor.

The menu below the message window is used to change between the object
operations mode and the state operations mode of the editor. It is also used to
save changes and to exit the editor.

The large window b the display window. It displays the objects that are in the
library you are editing.

To the left of the display window is the options menu. Creating RAPIDS-II
generic objects requires the use of twp major modes, one for object-level
operations and one for object-state operations. Each of these modes has its
own associated menu of available options, which is always displayed to the
immediate left of the display window. In the figure above, the menu is that
associatedwith the objectoperationsmode.

At the bottom of the set of windows is a long thin window that provides file
information about the current library. It shows which file you are editing. If
changes have been made but not saved, this window will appear in inverse

32

RAPIDS II Authoring Manual _ August 1990 3. Building Generic Objects

The Graphic
Parts of • Multi-
State Object

video -- it will display white characters on a black background, rather than
the normal black on whke.

RAPIDS-II genetic objects have two kinds of appearance elements. One is a
static portion. This is the part of an object's appearance that doesn't change
when the object changes states. The other kind of appearance element is the
state appearance. This is the part of the object that is visually different in
different object states.

The Stat_: Part of an Object's Appearance Two State Parts

The Object Shown in the Two States

To draw an object you will have to use three menus. The Object Operations
menu is used to issue commands relevant to entire objects. When you actually
draw the static part of the object, a Primitive Ops menu, which has the
drawing tools, will appear. The State Operations menu lets you perform
special operations on object states in addition to providing access to the
Primitive-Ops drawing menu. In the two figures below, the Primitive-Ops
menu is shown overlaid on the two top-level menus (Object Operations and
State Operations).

33

RAPIDS H AuthoringManual _ August1990 3.BuildbtgGenericObjects

Pf-t IMI TI\.iP- ',])P'

Copy

Delete

Done

Line-Width 1

Move

Flotlte

Add lqe

Coutlnu

C(

De

Hal

Mi

Re_

Ro_

_c

_itmap

I)OX

oir¢le

line

_ texl

Copy

DelMe

Done

line-Width 1

Move

Rotate

Scale

Drawing theStatic Part of the Sequence Valve Drawing the State Part of the Sequence Valve

As the above figures indicate, the dra_ng menu (which is labeled PRIMITIVE-
OPS) can be overlaid on either the objeci operations menu or the state
opera_oru ru_- These two modes are the basic modes of the generic editor.
You change between these modes by clickingon the appropriate option in the
menu bar over the Display Window.

The menu bar is used to choose between the Object Operations mode and the
State Operations modes of the generic editor. It also has the Save and Exit
commands. Save simply saves the current version of the library you are
working on, using the original name you specified when you opened the
generic editor. As with other Inteflisp-D applications, a version number
extension will be appended to the file. By renaming an earlier copy of a
library file (or by explicitly specifying the extension), you can edit an earlier
version of the library, if necessary.

34

RAPIDS 11Authoring Manual --August 1990 3. Building Generic Objects

Exit

The Two Malor
Modes of the
Generic Editor

Use this option to end the current session of the generic editor and close its
windows. If your changes have already been saved, you will be presented
with two choices

EX/t
CancelE,_t

If your latest changes have not been saved, you will be presented with a menu
that gives you three choices

SaveFileBeforeExiting
ExitWithoutSaving

CancelExit

If you click on the first option, the results of your work in the session will be
preserved. The second option lets you stop working with the generic editor
but throws away your changes to the object library. You'll be required to
confirm this command before it will be carried out. The last option cancels the
Exit choice and lets you continue the editing session.

The Exit option may also lead to further prompting, if you used the command
that copies an object from the current library to another library. You will be
asked whether you want to complete that transfer by saving the destination file
with the new object.

The object operations mode is used to perform actions on an object as a
whole. The state operations mode is used to carry out actions on a state part of
an object. The next two sections of this chapter explore these modes of the
generic editor.

35

RAPIDS II Authoring Manual m August 1990 3. Building Generic Objects

The Object
Operations Menu

Object Operations

_]h]_rt o[)_r;!tinnt

Add Hew Object

Copy

Cycle

Delete

Object Attributes

Object Graphics

Object Handles

Move

Rename

Rotate

Rules

Scale

Move to Page

Copy to File

The Object-Ops menu, as with most other
RAPIDS-II editor menus, appears at the left
of the main editor window. Its primary uses
are

• to examine already-defined objects
• to edit such objects
• tO crea_ new objects.

The window at the top of this menu to
displays the object name and state name of
the currently selected generic object. This
window is the Object Information Window.
As is discussed below, other information is

displayed in the object information window
when certain operations are being per-
formed.

"_bier t Ir)f_)rn,at)c_n

Object:

SecluenceVa I ve

State:

C1osed

Most object operations are performed on a
selected object. To select an object., point to
theobjectand clicktheleRbutton.

Some objects may have no
appearances,and thereforecannotbe __s]

selectedby clickingon them. To [Key state transitions l

select such objects, holddowlk the [Stealth Bomber [
middle button anywhere in the display Window. A menu will appear, asking
you to choose which of the listed invisible objects you wish to select. If there
are no invisible objects, then the message window will tell you that there are
no invisible objects to select from.

36

RAPIDS 11Authoring Manual _ August 1990 3. Building Generic Objects

A Note on Hiding
Oblects

Add New Object

Depending on the library of generic objects you are working on, you ma..y find
that the display window is quite cluttered. Once you have selected an object to
edit, the rest of the displayed library can be thought of as background.
Sometimes you want these back.ground elements to be displayed, because you
will want to draw a new object m proportion to the other object types that it
will appear with. At other times, however, you will want to make this
background of objects invisible, so that you can concentrate on the selected
object. To hide the background after you have selected an object

• Move the mouse pointer into the display window.
• Press and hold down the right mouse button. A menu will pop up.
• Point to the Background menu item and release the mouse button.

All the objects but the one selected will disappear. To bring them back, use
the right mouse button to bring up the display window menu and choose
Background again. The Background command is used to toggle the visibility
of all the objects that are not currently selected.

The remainder of this section describes the Object Operations commands.

The Add New Object command is used to create new generic objects. When
you select this menu option, you will be asked to name the new generic
object. If the name you choose is already in use, then you will be prompted to
choose again.

o1' new object: >> St.abtlizer^

$ttte:
Open (Conttnuous)

Copy

o

4--'-u-

-L-

_I L

When you type the Return key, a new object with that name is created. The
new object is the selected object. This object is invisible, since no graphics
have yet been created for it. The object information window reflects this state
of affain:

37

RAPIDS 11Authoring Manual _ August 1990 3. Braiding Generic Objects

)hiect tntorrn,_ti_n

(lavislble Object)

Copy

3tal_'Ct it ffor'rnatirjn

Cycle

Delete

Object

Copy is used to create a new object that is identical to the currently selected
object. First select the object you want to copy, then click on Copy. You will
be prompted to type the name of the new object. After you type the new name
and press Return, the new copy will appear on the screen. It will be selected,
and it will ready to move (without first clicking on the Move menu item).
Position it where you want it by moving the mouse in the library window and
click the left button to position it. The copy remains selected, so subsequent
operations will apply to it until you select a different object.

oHect:

SequenceValve

Copying object SequerceValve
Name of ne_ object: >>A

Clicking on Cycle makes the selected object appear in its next state. You can
repeatedly click Cycle to see all of the appearances of a generic object. Notice
that the state name is displayed in the object information window at the top of
themenu.

Attributes

The selected object is deleted. Naturally, the behaviors as well as all the
appearances of the object are deleted. After you click on Delete, the message
window asks whether you want to delete the object and the mouse pointer
turns into a little picture of a mouse. Click the left button to confirm the
deletion; crick the right button to abort the deletion of the object.

An object's attributes are the named variables that hold values associated with
the object. When you click on Object Attributes, an attribute editing window
appears to the left of the display window. In the figure below, the attributes
for the Sequence Valve generic object are displayed.

38

RAPIDS II Authoring Manual _ August 1990 3. Building Generic Objects

Add Delete

)13iect Attributes

Attribute Name Type

._eteLoc_ Reef

Curren_tete Atom

ObtectLo(J(Integer

Obte<tL o<Y integer

extend.pressure Integer

retract-pressure integer
Force Boolean

Done

Handle Region

(47 130 10 10)
undefined

undefined

Some of the attributes appear in italic type, while others axe in boldface. The
ones in italics are attributes that are created and maintained automatically for

the object. Any object with an appearance will have the attributes ObjectLocX
and ObjectLocY. Any object with state parts will have the attribute
CurrentState, Any object with a movable state will have the attribute
StateLocX or StateLocY or both. Any object with a rotatable state will have
StateRotation and StateRotationCenter. These attributes cannot be changed or

deleted using the Attribute Operations tool

The attributes shown in bold type style are ones that obtain their values from
the attribute value assignments performed by your rules. Those in italics
receive their values as a result of certain operations such as moving an object
or rotating a state. Your rules control these values when they include built-in
functions such as MoveLocX and Rotate.

You can change the name of an attribute in the object attribute editor by
clicking in its name with the lef_ button and then backspacing and typing. If
you click the name with the fight button, the name will be deleted and you can
type a new one. Within an object, attribute names must be unique. If you try
to give an attribute a name that is already in use, such as StateLocX, then the
editor will append a number to the new name, as in StateLocXl. You cannot
use the name of predef'med attributes even if the attribute is not currently in
use.

You can also change the type of an attribute. Click on the type name, and a
menu of type options will pop up. Choose the appropriate type for the
attribute.

If an attribute has a handle, then the region of that handle will appear in the
column labeled Handle Region of the Attribute Operations window. (A region
is displayed as a set of four numbers, representing the vales of the left, top,
bottom, and fight of the region rectangle.) If an attribute does not have a

39

RAPIDSil AuthoringManual_ August 1990 3. Building Generic Object

handle, then the handle region will appear as undefined in the Handle Regwn
column. You can change the handle region of an attribute by clicking on its
value with the left button. You will be presented with options for changing,
adding, or deleting the handle, similar to the corresponding actions for Object
Handles. If you click with the middle button on the handle region, then that
attribute's region will be highlighted in the display window.

The object attribute editor will also let you add new attributes and delete old
ones. To add a new attribute, simply cllckAaff in the editor's three-item menu
bar. A new, generated attribute name, such as 'Attribute 102' will appear, and
its type will be 'Atom.' You can change the name and type of this new
attribute in the same ways that you would edit an old attribute's name or type.

Delete

)biect Attributes

Attribute Name Type

Curren_ate Atom

06#¢.ttOClX tnteger

Ob_CtLocY Intege¢

P-fear tntege_

P-front k_.ger
for(e 6g41ean

Attribute102 Atom

Oone

Handle Region

undefined
undefined
undefined
underfed

Oblect Graphics

To delete an an attribute, first click on the Delete option in the menu bar. You
will be instructed to select the attribute to be deleted. Clicking anywhere in the
line that represents theattribute will delete it.You will notbe askedtoconfu'm
the deletion; it will just happen. Always click carefully after selecting Delete.

The Object Graphics command is used to create and edit the static part of an
object's appearance. Objects need not have any static pan, so it is possible to
create a functional generic object without using this command.

4o

RAPIDS II Authoring Manual -- August 1990 3. Building Generic Objects

Oh _ct Operation_

Object Handles

Add Ne

C(

C_

De

Object

Object

M(

Ren

Ro(

RI

B¢

Move

Copy

oitm_o

_ DOX

CirCle

¢ UI',¢II

line

text

Copy

Delete

Done

line-Width

Move

Rotate

When you choose the Object
Graphics command, all the
objects except the currently
selected one disappear from
the display window. (You
can make these objects
reappear using the Back-
ground command in the
Window Operations menu.
You may want to have other
objects visible so that you
can draw the current object
so that it will mesh appro-
priately with the other objects
that will appear with it.) Any
displayed state appearance
graphics will also disappear.

The Primitive-Ops menu will
appear, partially overlying
the Object Operations menu.
Using the graphics tools and
the commands of the

Primitive.Ops menu, you c_
draw or graphically edit ttae

unchanging part of the
selected object's appearance.
Graphic editing is described
below in the section called

'Drawing Operations.'

Scale

To get out of the graphic
editing mode, click Done on

the Primitive-Ops menu. The menu will disappear, and you will again be able
to issue other object operation commands.

In RAPIDS-II, the term handle refers to a designated graphical area
(associated with an object) that is sensitive to mouse clicks. Any object that
you would like students to be able to manipulate directly with the mouse must
be given one or more handles. Most handles are state handles. They are not
created using the Object Handles command, but rather the Handle command
in the State Operations menu, which is described below in the section on
'State Operations'. Object handles are used when you want the handles to
relate to some attributes of the object rather than directly to its states.

41

RAPIDS H Authoring Manual m August 1990 3. Building Generic Objects

• I

Add Handle

Delete Handle

l_eve Handle

Rename Handle

Shape Handle

Done

When you select Object Han_es, a new menu of Handle Operations appears,
overlying the lower portion of the Object Operations menu. So long as this
menu is visible, the generic editor is in the handle operations mode. This
mode is used to add, delete, move, rename, and shape the handles of an
object (Remember that most objects do not have handles. Only (hose (ha(can
be directly manipulated with (he mouse should have handles.)

If you click on Add Handle, the message window will prompt you for (he
name of the handle (hat you want to add. Type in an appropriate name for the
handle and type (he Remm key.

Enter handle name >> A

When the selected switch or other control is made up of a small number of
alternative states, you will ordinarily create a handle that corresponds with
each state. It may therefore be appropriate to give each handle a name that
corresponds to the state into which it will put the object.

After you have entered the name of the object, a menu will appear that asks
what kind of handle shape you want to use:

[ll;i IRllau ililai illlll !11 l;iillJli I I1_ m _ liI

Sweep region
Enter handle size

Use predefined handle
Use region of obiect

There are four different handle shape options. Whichever method you use to
create a handle, make sure (hat the handle is within the graphics of the object.

42

RAPIDS H Authoring Manual _ August 1990 3. Building Generic Objects

RAPIDS-II is not able to detect handle manipulations outside of the
rectangular bounding box that encloses all the graphics of the object. In any
case, it is always a good idea to graphically indicate the 'mouse-active' areas
of an object, so that it will be clear to students how they can manipulate them.

If you select the f'trst handle shape option, Sweep region, the mouse shape
will change to the standard Expanding Box cursor. Drag out a rectangular
region that will serve as the named handle. Any student click within this area
will be considered a handle manipulation.

The second way of designating a handle is to Enter handle size. If you choose
this method, you will be prompted to enter the width and height of the handle
region.

i Handle O ,erations

m

Add Handle

Delete Handle

/Clove Handle

Rename Handle

Done

• I

Enl;er widt;h of
handle

- cb"

t 2 3
I t54145s

7 8 9

bs 0 ok

-tll_ Jl t.] _, tl ;.]._

Add Handle

Delete Handle

It/ore Handle Enr.er height; of
handle

Rename Handle
1 2

Is 1467 8

bs 0

Done

c_
3

6

9
ok

[IJp'l ('lLf, r/Tl i (411_il tl [t2k_: _ i k _

For objects with discrete states, it is often appropriate to use the predefined
handle type when creating state handles. It is also possible, however, to make
one of these small square regions an object handle.

When you are creating a predef"med handle, the cursor will change into the
shape of one of these handles, a small black box, and the message window
will prompt you to place the handle at the appropriate place on the object.

Select position for handle A

Just click the left button of the mouse where you want the handle to be placed.
Don't be concerned about the appearance of a black square at that point. This
visual representation of the handle appears only when you are in the generic
editor's handle-editing mode.

The fourth shape options for handles is the easiest one to use. The choice Use
region of object will simply treat the entire bounding region of the object as a

43

RAPIDSIi Authoring Manual _ Aug:tat 1990 3. Building Generic Objects

handleregion.That regionwillbe highlighted,justasthehandleregionsyou
can createusingany of theothermethods axehighlightedduringthe Handle
Operationsmode.

)tJi_,t Irlforrn._tion

MOVe

Handles can be selectedby clickingon

them when you areintheHandleOperation
mode. A selectedhandlewillbe highlighted
by a rectangularborder.When ahandlehas

been selected,itsname appears in the
Object Information window, below the
state name.

Object:

Horizontal Scroll Bar

State:

Thumb <Continuous>

H ladle:

811der handle

Most of the Handle Operations menu commands apply to the selected handle.
Delete Handle will ask that you confirm the deletion of the selected handle by
clicking the left mouse button. If you don't want to carry out the deletion,
click the right button. Move Handle will let you move the selected handle
using the mouse. Click the left button when it is positioned where you want
it. Rename Handle will bring up a prompt for a new name in the message
window. The Shape Handle command will pop up the menu of handle shape
options discussed above, so you can use any of the standard handle authoring
methods to Edit the selected handle's shape.

i_ llnill n[_i illtll iillli Iilli I Jill I jill lit iIII

Sweep region [

Enter handle size
Use predefined handle

Use re,lion of object

Finally,clickingon theDone command intheHandle Operationsmenu will
takeyou out of the Handle Operationmode, back tothe ObjectOperations
mode.

To move the currentlyselectedobject,clickon theMove command on the

Object Operations menu. The message window willdisplay a message
showing that the selected object is 'hooked to the mouse' and will move with
the mouse. Click the leR button to position the object and end the Move
operal_on.

Rename

$1 icier

Choose the Rename command on the Object Operations menu to change the
name of an object You will be prompted to enter a new name for the selected
object type. Type the name and press the Return key. The name appears in the
Object Information window. (See below.)

44

RAPIDS II Authoring Manual _ August 1990 3. Building Generic Objects

Rotate

I Object:Slider

Remember that you are naming a generic object, not a specific instance.
Don't call a two-position generic switch a "power switch" just because you
plan to use an instance as a power switch in a specific simulation. Give it a
more generic name, such as "Two position switch."

This command is used to rotate a selected object. You will be prompted to
enter the number of degrees of rotation. Type in a number (counter clockwise
rotation is positive) and press the Return key. Rotation will be about the
center of the bounding region of the object.

Rules

Hou many degrees do you wish to rotate object Vertical Scrol| Bar? >>

eI__r,.:,t,tLoj o_,..... i Btate Ops Bave

The Rules command closes the generic editor windows (temporarily, just to
reduce screen clutter). It opens a new set of windows, the RAPIDS-II rule
editor. This rule editor is available in both the generic editor and in the scene
editor, although there are minor variations in the availability of features in the
two environments. The figure below presents the initial appearance of the rule
editor.

The top window shows a picture of the selected object (here, the sequence
valve). The rules displayed in the window immediately below are the rules
that are associated with that generic object.

45

RAPIDS II Authoring Manual _ August 1990 3. Building GenLric Objects

e

!:i:i:!:i:i:):i:i::
:,:.:::.:.:.::
:'::;::::::::::9:

iii!i!ii ii
:.:.:+:.:,:.:

!
iiiiiiiiiiiiii il
ii!!i

Add Hew Object

Copy

Cycle

Delete

Object Attributes

Object C3rapblcs

Object Handles

),/ore

Rename

Rotate

[_lJ[_

New rule by menus
New rule by typln|

Cop7 rule
S_dlt rule

Delete rule

Scale

0

.

C

==:: ::: -:.
(/t-t_:__1_:1@:?¢¢oI¢1ed};_.111_: _Alllg t: P6: L_})':.D:.:.D :,: V,:.:.:. >:,D D: :. : :,:i: : :. ::;

::::::Oar:::.:::::::::::::::::::::::::: ::::-:
(:1_.:(_.rm_.t,_t_,tm.:ll. :*3tJ_1_'_t/):. :tl,xm. :(A,m,|_in Ph:ps.)): .:-:.:.:-:-: : :-:-:.:.:-: :.:.: : :.::

When an existing rule is being edited, other windows open as well. The
section on 'Internal Rules' later in this chapter presents the use of the rule
editor in some detaiL

After you f'mish working on the rules of the selected object, you must click
Done in the leftmost menu. The rule editor windows will close and the

windows of the genetic editor will reopen, just as they were when you clicked
on Rules in the Object Operations rr_u.

Generic objects can also be scaled. When you choose this menu command,
you will be asked for the amount of scaling. To make an object one-and-a-half
times as big, enter 1.5. To make it half its former size, enter .5 and type the
Return key. The object will be redrawn in the main window in the new size
you have specified.

BY vhat factor do you vish to scale object Horizontal Scroll Bar? >>

46

RAPIDS !I Authoring Manual _ August 1990 3. Building Generic Objects

Move to Page

In some cases you will find it convenient to have copies of objects with
different scaling and rotation. First use the Copy command, then the Scale
and Rotate commands to build such copies.

Libraries can have multiple pages. A library page is a view the size of the
generic editor's display window. You can change p.ages using the display
window's right button menu. The Move to Page optton is used to move the
selected object from one page to another. You will be prompted for the
number of the page to which you want to move the object.

There are 2 pages.
Yhich page should object
>>^

Horizontal 3croll Bar be moved to (enter 0 for a neu page)?

Copy to Rle

You can add a new page to the library by responding 0 to the request for the
destination page number. The actual page number of the new page will be one
greater than the number of the former last page.

Sometimes you may find that a given generic object should be included in a
different library. You can move a copy of the selected object to a library other
than the one that is currently open. Enter the name of the file you want to put
the object into when the prompt below appears in the message window. Don't
precede the file name with a quote mark.

Copy object Horizontal Scroll hr to library7 >> ^

If, when you are prompted for the name of the destination library, you type
the name of a file that doesn't exist, then the generic editor will create a new
library of that name and will put a copy of the selected object into it.

The copy will not actually be completed until you issue a Save command or
exit the generic editor. At that time the fde that includes the other library will
be rewritten with the new (copied) object. If you choose to terminate your
editing session without saving, you will be asked whether you want the object
copy to another file to actuaLly take place.

Be aware that it is possible to copy the same object two or more times to
another library. If the object has been copied to the library from the same
source library, then all the copies will be in exacdy the same place on the
screen in the destination library. If it was copied an even number of times

(e.g., twice), then it will appear not to be present at all -- the copies will erase
each other. If this happens to you, then when you later edit that library, you
should delete the superfluous objects. It is also possible to copy into a library
an object with the same name as a different object that is already there. In this
case you should edit the library and change the name of one of the objects.

47

RAPIDS IIAuthoringManual _ August 1990 J.BuildingGenericObjects

A Hint: Create an
Empty, Invisible
Object

Authors often find it useful to have an empty generic object, one with no
appearances or behavior. Later, when building a simulation in the specific
editor, you can create instances of this 'empty' object, assign appropriate
graphics, attributes, and behavior rules to each instance, and thereby
customize your simulation in ways you had not planned on when you created
the library. These invisible objects can be very useful, but they cannotserve
as the basis for complete graphical simulations, because they cannot have
appearances that change under the control of rules.

%tate Ooerations

Add New State

State Operations

Add New State

Continuous State

Copy

Cycle

Delete

Handle

Move

Rename

Rotate

Scale

State Graphics

Once you have created the unchanging static
part of an appearance, you will ordinarily
build the state part or parts. The State
Operations menu is used to name, draw, and
position the variable parts of an object's
appearance, the state-dependent graphics.
To get into the State Operations mode,
choose State Operations from the menu bar
at the top of the display window. As in the
Object Operations mode, the Object
Information window appears at the top of
the menu to display the name and state of the
selected object.

While you are in the State Operations mode,
you can change the selected object in just the
same way that you do in the Object
Operations mode. Simply click on the next
object that you want to edit the states of.

The state operations commands operate on
the selected state, just as object operations
(intheObjectOperationsmenu) operate on
the whole object.If you want to createa
new stateto work on, you can use theAdd

New State command. See itsdescription
below.

You can add a new stateto a selectedobjectusing the Add New State
command. The message window willprompt you forthe name of the new

state, as shown in the figure below. After entering the name (by typing it and
then pressing the Return key), you will usually draw the state, using the State
Graphics command.

48

RAPIDS H Authoring Manual _ August 1990 3. Building Generic Objects

Ill] _]_I_alsl--n• ,,v.tamli

I Object:

Hydrau 14cPump

St.ate: .

Please enter a n____ofor the state >> Maxjm'm I'

Continuous
State

The Continuous State construct
provides one of the most powerful
features in RAPIDS-II. It is used to
create objects that vary continuously
in appearance, typically based on the
value of some attribute.

When you choose the Continuous
State command from the State

Operations menu, a new set of
windows, labeled 'Continuous State
Adjustments' appears at the bottom
of the State Operations menu. These
windows are shown at the right. The
upper window provides a control
interface for experimenting with the
appearance of the continuous object.

The lower window is used to set the
movement and rotation limits of the

continuous state. For example, if a
state part is to move horizontally,
you would enter values for MinX
and for MaxX. A value of 0 refers to
the location of the state as it was

created using the other state
operation tools, such as the drawing
tools and Move. Negative values are
to the left of the state's original
location, positive values are to the
right.

XTranslation:[''7.11,

[,I,I,l,l,l,l,l,l,l,I
0 20 4g 60 90 1_6%

Y Tr_nsl_t,ion: [=====7%

I,ILI, I ,t , I, I ,I , I , I , I
8 20 40 60 80 100%

Rotation: ['===7qk

Min X Max X

MinY MaxY

MinRot. _ MBx'Rot.

RotationCenter: X Y [""'7

For MinY and Max}', negative values are below the original location of the
state, and positive values are higher on the screen. For both X and Y values,
the numbers refer to screen pixels.

The MinRotation and MaxRotation fields of the continuous state object refer

to the number of degrees that the object can be rotated from its originally
authored orientation. Positive values are clockwise; negative values are
counter-clockwise.

If the continuous object's state is to be rotated, you must also set the center of
rotation for that state. These values are to be expressed in window coordinates
(where 0,0 is the top left comer of the window).

49

RAPIDS 11 Authoring Manual _ August 1990 3. Building Generic Objects

There are two ways to set range boundaries such as MinX and MaxX. You
can click in the box to the right of a range boundary label (such as 'MaxX')
and enter a number or edit one that is already displayed there. Alternatively,
you can click on the label itself (e.g., on 'MaxX') and then position the
continuous state at the point that represents the labeled range bound. When
you click the left mouse button (signifying acceptance of the displayed state as
the named boundary), the numerical value will automatically be f'tUed into the
box by the label.

When you want to see the visual effects of the continuous state boundary
changes you make, click on the button labeled Update in the lower window.
The state appearance of the selected object will be updated. When you have
finished making all the changes you want in a continuous state, clicking on
the Done button will exit the Continuous State Adjustment mode.

Rules that control continuous state objects refer to their translations as a
percentage of the range of translation. Rotation numbers should be interpreted
as percentages of the range of rotation.

You can easily experiment with the appearances of a continuous state object
by using the upper window. The horizontal movements of the piston in the
actuating cylinder assembly (shown below) can be explored in several ways
in the Continuous State Adjustment mode. You can click in the X Translation
Ruler to reposition the position marker (the small black triangle in the ruler).
The marker will move to the location of the mouse in the ruler, and the
continuous state graphic will be updated to reflect the new position.

;or_tinuotJs State Adustments

X Translation: [_qk

I,i,l,l,l,l.l_l,I, I, I
e 2S 4S Se Be 180%

Y Tramlation: [_%

1,1.1 ,I.l,l,l.l.l,l.I
O 20 40 511 80

Rotation: ['_

10t'_

Minx Marx

MInY MaxY

I---I I-"!
I_tationCenter: X [_] Y I'm"1

JO

RAPIDS H Authoring Manual _ August 1990 3. Building Generic Objects

In the figure above, a click at the 63% point on the X Translation ruler has
had the effect of moving the state graphic 63 percent of the way from -3 to 29
on the X axis.

You can also experiment with continuous state appearances by dragging the
position marker in the ruler. Hold down the left button while pointing at the
position marker and drag it along the ruler. The continuous state graphic will
update simultaneously.

A third way to explore a continuous state appearance is to enter a number in
the box above the ruler. In this case, you must click on the Update button at
the bottom of the upper of the two Continuous State Adjustment windows to
see the change reflected in the appearance of the object.

You can explore rotating continuous states by using similar techniques. In the
figure below, a rotatable hinge mechanism is displayed in a state of rotation
that is 63% of the range (from 0 to -20). The signs of the Min and Max
Rotation values are important, the maximum rotation of -20 specifies the same
rotation position as 340 would. However, 0 to 340 would imply a clockwise
rotation, while 0 to -20 prescribes a counter-clockwise rotation.

A continuous state rotation may be more than 360 degrees. For example, if
Min Rotation was set a 0 and Max Rotation at 720, then moving the rotation
slider bar from 0.0 to 1.0 would cause the state to rotate two full revolutions.

Setting Min and Max Rotation by clicking on the label (Min Rot. or Max
Rot.), and then rotating the object to the desired position using the mouse.
The object will rotate, tracking the mouse until the left button is clicked. The
values for Min and Max Rotation will be continuously updated in the box to

therightofthelabel.

ontinuou9 State AO ustment3

X Translation: ['--'-1 Clb

i,l,l,lAl,l,l,i ,I ,I,I
0 20 40 60 O0 166%

Y Translation: I'_%

J,l.,.,,s.,.I. ,, ,.I,I
il ZII 451 60 80 lo0%

Potation: [_"]_

i , I , I, I, i,i , lIP, i, I ,i, I
il 20 451 60 88 1 U6"/,,

I I
Min X Max X I !

MinY MaxY

MinRot. _] MuRat.

Rotation Center: X _ Y [_

51

RAPIDS H Authoring Manual Q August 1990 3. Building Generic Objects

Copy

Cycle

Delete

Handle

Once you have finished exploring a continuous state, you must click on the
Done button in the lower window to leave the Continuous State Adjustment
mode.

Often the difference in appearance between two states is quite simple.
Sometimes, for example, one part of an object shifts position in different
states. This variable part can be drawn in one position for the first state. To
make the next state, use Copy to duplicate the appearance of the fast state's
graphics, and then use Move or Rotate to put them in a new position.

.... Copytng stats Maximum Pumping of object

jpl.. enter a name for" the state >> ^

Hydrau 11cPump l
I

State:

Ilaxl-,u-, Pumptng

After you click on Copy, you will be prompted to type the new state name.
The new state is the selected state, so you can easily modify the copied state.

The Cycle option is used to step through the states of an object. After the last
state for an object, Cycle will bring up the fast state. (You can create a state
with no graphics by not using the State Graphics command while you are
working on a state, or by deleting all the graphical primitives in a state.)

This menu command deletes the selected state. It requires that you confirm
(by clicking the left mouse button) that you want to delete the state. The next
state becomes the selected (and depicted) state

The term handle refers to a designated graphical area (associated with an
object or an object state) that is sensitive to mouse clicks. Any object that you
would like students to be able to manipulate directly with the mouse must be
given one or more handles. Objects with a fixed number of static alternative
states can have a single handle associated with each of those states. Such
objects arc treated specially by the RAPIDS-II simulation driver. Using the
state handJe feature, you can easily build working switches and other controls
without writing rules to handle the mous¢ actions that manipulate the state of
the object. In effect, these rules are hard-wired into your simulation. (They
cannot be edited usin!g the RAPIDS-II rule editor.) If you want to write a rule
that refers to the acuon of changing a control, the rule should refer to the
object's state, rather than to aMouse Down in Handle action.

State handles will put objects directly into the states associated with the handle
when the simulation is running and a student clicks on the handle. Authoring
such state handles is closely linked with the states. In the two figures below,
we see State Handle Operations being applied to two states of a switch. The
predef'med handle shape is used to establish an Up handle that corresponds to
the Up state of the switch in the figure at the leg A predefmed handle shape is
also used to identify the Down handle that is associated with the Down state
of the switch. It is a good idea to give handles the same names as their
corresponding states for alternative state objects.

52

RAPIDS II Authoring Manual _ August 1990 3. Building Generic Objects

These handles were created by the following sequence of steps. First, the
switch object was cycled (using Cycle) to its Up state. Then, the Handle
command was invoked. Add Handle was used to create a new handle and to

give it the name Up. The predefined shape was chosen and was positioned on
the upper contact of the switch. Then Done was used to exit from the Handle
Operations mode. The switch was cycled to the next state, Down, and the
process was repeated to add the Down state handle.

3biect Information 3biect Information

Object:

Sui tch-3¥ I re

State:

Up Display Di31otay

Handle:

Up

State O 9eration_ State O oerationa

Add Mew State

Continuous State

Copy

Cycle

Delete

object:

Sut tch-3Wi re

State:

Oovn

HanA].e:
Born

Add Mew State

Continuous State

Copy

Cycle

Delete

|

Add Handle

Delete Handle

Move Handle

Rename Handle

Shape Handle

Done

Add Handle

Delete Handle

Move Handle

Rename Handle

Shape Handle

Done

53

RAPIDS !IAuthoring Manual -- August 1990 3. Building Generic Objects

Using Handle
Operations

If you click on Add Handle, the message window will prompt you for the
name of the handle that you want to add. Type in an appropriate name for the
handle and type the Return key.

After you have entered the name of the object, a menu will appear that asks
what kind of handle shape you want to use:

[[;[Kili-i[;l_ I[l[I I[1| I_i iI(@ N I i[t I iK] lira I [_

Sweep region
Enter handle size

Use predefined handle
Use region of stste

There are four different handle shape options. Whichever method you use to
create a handle, make sure that the handle is within the graphics of the object.
RAPIDS-II is not able to detect handle manipulations outside of the
rectangular bounding box that encloses all the graphics of the object. In any
case, it is always a good idea to graphically indicate the 'mouse-active' areas
of an object, so that it will be clear to students how they can manipulate them.

If you select the rust handle shape option, Sweep region, the mouse shape
will change _o the standard Expanding Box cursor. Drag out a rectangular
region that will serve as the named handle. Any student cUck within this area
will be considered a handle manipulation.

The second way of designating a handle is to Enter handle size. If you choose
this method, you will be prompted to enter the width and height of the handle
region.

For objects with discrete states, it is often appropriate to use the predefined
handle type when creating state handles. When you are creating a predermed
handle, the cursor will change into the shape of one of these handles, a small
black box, and the message window will prompt you to place the handle at the
appropriate place on the object.

I Solact position for handle

A

Just click the left button of the mouse where you want the handle to be placed.
Don't be concerned about the appearance of a black square at that point. This
visual representation of the handle appears only when you are in the generic
editor's handle-editing mode.

The fourth shape options for handles is the easiest one to use. The choice Use
region of state will simply treat the entire bounding region of the state as a
handle region. That region will be highlighted, just as the handle regions you
can create using any of the other methods are highlighted during the Handle
Operations mode.

54

RAPIDS 1IAuthoring Manual _ August 1990 3. Building Generic Objects

Move

_biectInformation

Rename

Delete Handle will ask that you confirm the deletion of the handle by clicking
the left mouse button. If you don't want to carry out the deletion, click the
right button. Move Handle will let you move the handle using the mouse.
Click the left button when it is positioned where you want it. Rename Handle
will bring up a prompt for a new name in the message window. The Shape
Handle command will pop up the menu of handle shape options discussed
above, so you can use any of the standard handle authoring methods to edit
the handle's shape. Finally, clicking on the Done command in the Handle
Operations menu will take you out of the Handle Operation mode, back to the
State Operations mode.

This command attaches the mouse pointer to the state graphics. When you
move the mouse, the state appearance moves. To set the new position, click
the left button.

Move object state to desired location.

Object:
3=ttch-3¥tre

State:
Oovn

After choosing the Rename menu item, you will be prompted to type the new
state name. Press the Return key at the end of the name.

enter a name for the state >) Oo_

Rotate The Rotate option behaves just as it does in the object operations mode. You
will be asked how much the state should be rotated.

|ll I I1 Ill Jill llllR_ fill|

Object:
_ t _h-3¥ t re

st,re:
Oovn

6y

uhat &_ount should state Doun be rotated? >
°°

After you enter the number of degrees of rotation you want, you will be
prompted to pick the center of rotation. Clicking the right button makes the
state rotate about its own center. If you click the left button, the mouse pointer
turns into a crosshair in a circle. Put the center of this pointer shape over the
desired center of rotation and click the left button. The state will then be
shown in its new orientation.

55

RAPIDS II Authoring Manual _ August I990 3. Building Generic Objects

Scale Like Rotate, the Scale option in the state operations mode behaves just as it
does in the object operations mode. Naturally, it affects only the selected
state, rather than the entire object.

By what amount should state D_n be scaled?))

State Graphics

Because of rounding anomalies, it is almost always preferable to draw objects
and their states in the size that will be required in the simulations that they will
be used in, rather than to scale them.

To build or modify the appearance of a
state, you usually have to draw some part
of it. The State Graphics command takes
you to the Primitive Operations mode. The
Primitive-Ops menu is described below in
the section labeled Drawing Operations. In
this mode, you can add, delete, copy,
move, rotate, and scale the primiuve
graphic elements that comprise a state
appearance.

Stat_ 0 aeration_

This is the same graphic primitives menu
that is brought up when you choose the
Object Graphics command in Object
Operations mode. The next section of this
chapter deals with these drawing tools.

Add H(

Contlnui

C¢

C_

De

Ha_

ao'

Sc

'_ DOX

oirole

linl

f._ texl

Copy

Delete

Done

line-Width 3

_JIo¥o

I=lotate

_ale

56

RAPIDS IIAuthoring Manual _ August 1990 3. Building Generic Objects

The Primitive-
Ops Menu

PRIIvllTIVE.OP

Arrow

Bitmap

Drawing Operations

&rrow

I_ _itma#

DOX

O ¢irOlll

_--s I|HII

Copy

Delete

Done

Line-Width 1

Move

Rotate

_.cale

The Primitive.Ops menu provides the primitive operations
for controlling the appearance of graphical objects in
RAPIDS-II. There are two ways to get to this menu. To
draw or modify the static part of an object, you select
Object Graphics from the Object Operations menu. To do
the same kinds of things to state parts, choose State
Graphics from the State Operations menu.

The appearances of RAPIDS-II consist of a number of
simple or 'primitive' graphical elements, such as lines,
circles, boxes, curves, and arrows. Unlike some 'paint'
programs, RAPIDS-II remembers which of these primitive
elements comprise each appearance. It is therefore possible
to edit individual primitives in existing graphics. This is
what makes it possible to delete, scale, rotate, move, or
copy a individual graphic element (such as a line or a
circle).

The first seven menu items are primitive drawing tools.
Most of them require that you click the left mouse button
twice in the main window drawing area: once to start the
graphic element, and once to end it. When you are done
drawing the element, click on another choice in the
Primitive-Ops menu. Naturally, you can click on the same
tool if you want to draw another primitive of the same type.
(The line tool works slighdy differently from the others, in
that it permits the drawing of multiple connected line
segments, as is explained below.)

When you click on this option, it is grayed out on the menu to show that it is
the tool currendy in use. You then create the arrow's anchor by clicking at the
point where you want the tail of the arrow. As you move the mouse pointer to
the location where you want the head of the arrow, a line is 'rubberbanded'
between the anchor point and the mouse pointer. When this rubberbanded line
is lined up just as you want the arrow to be, click the mouse button again. A
completed arrow then appears on the screen.

This menu item pops up a set of these menu choices:
Edit Bitmap Primitive
Get Bitmap From File

Create New Bitmap
The second option, Get Bitmap From File, lets you type in the name of a f'de
that contains a bitmap that you would like to use as a graphic primitive in your
simulation. After you give the f'de name, there will be a short delay and then
the bitrnap will appear in the display window.

57

RAPIDS II Authoring Manual _ August 1990 3. Building Generic Objects

The f'trstand thirdoptionsm EditBitmap Primitiveand CreateNew Bitmap

invoke the Interlisp-Dbitmap editingfunctionEDIT.BITMAP to letyou
createoreditbitmapgraphicalelements.EDIT.BITMAP givesyou amenu of

bitmap manipulationcommands. These includecommands for shifting,
rotating,inverting,and hand editingbitmaps. The hand editorgivesyou an
expanded view ofthebitmap,making iteasytoclickbitson (black)withthe
leftmouse buttonand off(white)withthemiddlebutton.To learnmore about

thefeaturesof the standardEDIT.BITMAP tool,read itsdescriptioninthe
Envos Lisp Library Packages Manual.

ORIGINAL PAGE IS

OF POOR QUALITY

Box

Hand Editing a Bitmap

The appearance of a generic object can consist simply of one or more bitmaps,
or such an object can contain bitmap elements in addition to other graphical
elements.

You can copy parts of the screen to bitmaps, making it possible to rough out a
graphic using the object tools, and then do the detailed work using the bitmap
editor. Be warned, however, that extensive use of bitmaps may slow down
your simulations significantly. Bitmaps usually require a great deal more
memory and storage space than do roughly equivalent object-oriented
drawings.

The box tool is used to draw rectangles. After clicking on the Box choice, put
the mouse pointer where you want one comer of the box. Click the left
button. Then put the pointer where you want the opposite comer. As you
move the mouse to this point, you will see a 'rubberbanded' rectangle drawn
on the screen. Click the left mouse button when you have dragged out a
rectangle of the desired size and shape.

58

RAPIDS H Authoring Manual _ August 1990 3. Building Generic Objects

Circle

Curve

Line

Text

To draw a circle after clicking on this menu choice, just click the mouse at the
point that is to be the center of the circle. Move the mouse pointer to any point
on the circle's circumference. (Again, a circle will be 'rubberbanded' as you
move the mouse.) Click when the circle is the size you want.

After clicking on the curve option, put the mouse pointer where you want the
curve to begin. Then click once where you want the middle of the curve and
once at the end of the curve. Three points are required to specify the curve.
Finally, click the left mouse button to conftrm that this is the curve you want.
It doesn't matter where the mouse is pointing for this conftrming click.

If you don't like the curve, instead of clicking the left button to conftrm, click
the middle button. This will remove the last point of the curve. You can then
try again, using the left button to set the last point, as before. If you're not
happy with the positions of the first two points either, you can click the
middle button twice at conftrmation time to remove all three points. Your next
left button click will set the f'trst point of the curve again.

This tool lets you draw a series of connected line segments. Each successive
segment begins where the previous segment ended. Click Line, then click
where you want one end of the line, drag a rubberbanded line out by moving
the mouse, and click where you want the line segment to end. When you are
finished making connected line segments, drag the mouse outside the display
window and click. The last 'rubberbanded' line segment (which extends to
the edge of the display window) will simply disappear.

WhenY°UC°"thetext°P °nY°uw beIgiven a choice of fonts in a popup menu. Select
the font you want by clicking the font name. To
choose font size, hold down the mouse button
on the font name you want and drag the pointer
off to the right. A secondary menu of the sizes
available for that font will pop up. Drag into the size you want and release the
mouse button. (Or, if you want to choose a bold style, drag to the right of the
size option to bring up a menu of style options. Drag the pointer into the one
you want and release the mouse button.) You will then be prompted to type in
the text you want displayed. End by typing the Return key. Your text will
then appear on the screen. Put it into position using the mouse. Click the left
button to drop the string where you want it.

If a generic object is to be rotated or scaled, the text should be added after
these operations. Text can only be displayed horizontally and vertically (up-
reading or downreading).

The f'_rst seven options of the primitive operations menu let you choose
among the seven primitive graphic elements of RAPIDS-II generic objects:
arrows, bitmaps, boxes, circles, curves, lines, and text strings. The
appearance of every graphical object consists of one or more of these graphic
.primiu.'ves. Most of the other menu options let you manipulate these primitives
m various ways.

59

RAPIDS H Authoring Manual _ August 1990 3. Building Generic Objects

Copy

Delete

Done

Line-Width

Move

Rotate

Scale

You can create a copy of any primitive graphic element. After clicking on
Copy, just click on the primitive element you want to copy. The copy will
appear, slightly offset. Drag it to the position you want it to have and click the
left button again to position it.

Any graphic primitive can be removed from an appearance. After choosing the
Delete option, click on the element (line, circle, text, etc.) that you want to
remove.

This option ends the primitive operations mode and returns to the menu that
called it. If you were working on a static appearance, you will be returned to
the Object Operations menu. If you were working on a state appearance, you
will go to the State Operations menu.

You can change the width of future lines with this option. The current default
line width is displayed beside the Line-Width menu item. The graphic
primitives (except for Bitmap and Text) use the current line width setting to
determine how thick their lines will be.

To move a primitive element, click on this menu option, then select the
graphic primitive to be moved by clicking on it. Use the mouse to move the
primitive to the location you want, and then click the left button again to drop
it there.

The Rotate feature works a little differently for different kinds of primitives.
Arrows, boxes, curves, and lines can all be rotated an arbitrary number of
degrees. (But notice that rotating a circle about its center is meaningless.) If,
after choosing the Rotate option, you click on one of these elements, then you
will be prompted to type the number of degrees to rotate. Positive values
represent counterclockwise rotation. When you rotate one of these primitives,
you will be asked whether you want to specify the center of rotation. If you
click the fight mouse button, the center of the selected primitive will be used
as the center of rotation.

For text and bitmap primitives, you won't be asked to type in the amount to
rotate. Instead, you will be given a menu of the allowable rotation values,
which are in 90-degree increments.

The interface for scaling is similar to that for rotating. You will be prompted
to enter a number that will serve as the scaling factor.

6o

RAPIDS II Authoring Manual _ August 1990 3. Building Generic Objects

Background

Bury

Grid

Grid On/Off

Window Operations

Background
Bury
Grid
Grid.On/Off

Hardcopy
Move
PreviousPage
NextPage
CreatePage
Redieplay
Shrink

Window operations are used to control global features of
the display window used in the generic editor. To bring
up the menu of window operations, move the mouse so
that the cursor is in the display window, and press and
hold down the right mouse button. A window
operations menu (titled Window Ops) will appear. Select
a menu item by moving the cursor to the desired item and
releasing the mouse button.

The background of an object is all the other objects in the library that is
currently being edited with the generic object editor. You may want to turn on
the background to make certain that the size of an object is proportional to the
other objects that it will appear with. At other times, you'll find that it is less
distracting to turn off the background so that you can concentrate on the
selected objecL

This command puts the generic object editor windows behind any other
windows on the screen. The other windows will then overlay the generic
editor windows. To bring the generic editor back into the foreground, simply
click the mouse once in one of its windows.

You can change the display window's grid size with Grid. The grid is a
coordinate system that overlays the display window. A grid is specified in
terms of the number of pixels between grid points. All graphic elements can
be automatically aligned to the nearest grid point when they are drawn. It is
often useful to draw objects that will appear together with the same specified
grid, so that their ports will match up correctly when they are positioned next
to each other in a scene.

When you choose the Grid menu option, the message window will ask you to
enter the new grid size. Type a number and the Enter key. A grid finer than 3
cannot be displayed on the screen.

The grid you specify is always in effect. (If you want to be able to draw to
any pixel in the window, you must specify a grid size of 1.) You can choose
whether or not the grid points are visible or not using the Grid On�Off menu
command. Clicking on this option toggles the visibility of the grid.

The t'trst time that the generic editor is opened in your environment the grid
size will be 1. The grid size you select will be preserved when you change
libraries and across editing sessions. Grid size is tied to the generic editor
itself rather than to object libraries.

61

RAPIDSI1 Authoring Manual _ August 1990 3. Building Generic Objects

Hardcopy

Move

Previous Page

Next Page

Create Page

Redisplay

Shrink

Graphic Utilities

This command prints the display window to an attached printer. Naturally,
this command works only if someone has already installed the printer drivers
appropriate for your printer in your Lisp environment.

You can use this command to move all the windows of the genetic editor, as
an attached group, to a new position on the screen. This option is rarely use&

Libraries can have several pages of objects, where each page is a group of
objects to be shown in the display window. The Previous Page command
brings up the page before the currently displayed page of objects. If the
currently displayed page is the first one, Previous Page will print a message to
that effect.

This command brings up the next page in the library. If the current page is the
last page, then the a message will tell you so.

Use Create Page to make a new page in the library, which will be placed after
the last page. The new page, which will be blank, of course, will then be
shown in the display window.

On rare occasions, you may f'md that spurious graphic elements are displayed
that don't seem to really be there. (For example, they can't be selected or
deleted.) The Redisplay option repaints the display window, eliminating any
such graphical anomalies. You may never have to use this command.

This command suspends the generic editor and shrinks its windows
to an icon that represents the generic editor. The name of the library
being edited appears in small letters near the top of the icon.

You can later resume the same editing session by opening up the i
icon can be opened either by choosing the Expand option from the right
button menu in the icon, or by clicking the middle button in the icon.

The Graphic Utilities consist of three functions (Crosshairs, ChangeGridsize,
DisplayGrid) that can be executed while you are performing a graphic
operation. For example, ff you axe moving an object or primitive and decide
that the grid should be changed, select ChangeGridsize by hitting the "G" key
on the keyboard.

Here are descriptions of the Graphic Utilities functions:

Crosshairs (C or c on the keyboard) m Toggles the display of large
crosshairs. This option is very useful for lining up elements that are
not very close to each other. See the screen snapshot with crosshairs
below.

ChangeGridSize (G or S on the keyboard) -- Changes the grid size.
This command is the same as the Gr/d command in the window

operations menu.

DisplayGrid (D or d on the keyboard) -- Toggles the display of the grid.

62

RAPIDS !I Authoring Manual _ August 1990 3. Building Generic Objects

Oh'oct 0 oration9

Leaving the
Generic Editor

Add He'

C¢

C'

De

Object ,_

Object

M,

Ref

Ro

Re

8c

Move

Copy

F._ text

Copy

Delete

Done

Line-Width =

Move

Rotate

Scale

The Generic Editor with Crosshairs Turned On

There are two ways to leave the generic editor. You can suspend an editing
session by choosing the Shrink item on the display window's right button
menu (the Window Ops menu). If you suspend an editing session, the
additions and changes that you have made will not be saved to the disk foe
that stores the library of objects. If something were to happen to corrupt your
Interlisp-D environment before you resumed the session and saved, those
additions and changes would be lost.

The other way to leave the generic editor is to use the Done command on the
Object-Ops menu. This command will actual end the session. You'll be
prompted to decide whether you want the additions and changes made in the
session to be saved or not.

63

4

Rule Authoring

Attributes

Rules in Rapids II

Rules describe and control the behavior of objects in RAPIDS IL Rules can
be either generic (universal for objects of a given type) or specific to a
particular simulation. Rules for generic objects are created and edited in the
generic editor. Authors can create and edit rules at the scene level as weLl as at
the generic object level. These rules are edited in the scene editor. The

propagation of effects in a simulation is determined, in part, by rules created
m the scene editor.

Rule editing in RAPIDS H is facilitated by a powerful menu-driven editing
system. In addition, the Envos Interlisp structure editor has been made
available for rule editing, for the use of authors who are comfortable with that
approach to editing structures.

Attributes are data structures associated with objects. Rules can refer to
attribute values. Attributes can include values such as voltages, fluid
prm.m'es, and mechanical forces. Behavior rules in generic objects typically
mampulate such values. In many cases, ageneric object rule transforms the

ue of some input attribute to compute the value of an output attribute. In
addition, however, authors can make other uses of the attribute mechanism.

Certain attributes are created automatically in RAPIDS II. These include an
object's location and its current state. Rules can refer to these standard system
attributes, as well as to attributes created by authors.

64

RAPIDS II Authoring Manual 1 August 1990 4. Rule Authoring

Processes

Internal and
External Rules

In RAPIDS H, student users can manipulate the simulation while it is active.
This feature of RAPIDS II makes it possible to write rules that set up ongoing
processes, such as incrementing or decrementing attribute values. The
appearances of objects can be made to reflect these changing values, so that a
simulation appears to be continuously animated. A simulation user can carry
out a series of interactions without waiting for all the effects of one action to
settle before carrying out the next one.

The combination of the new process and continuous appearance features make
it possible to create real-time task simulations in RAPIDS H, greatly extending
the training domains that can appropriately be approached with this tool.

Essentially the same rule editor is used to build all RAPIDS H rules. Rules
that are associated with generic objects are created when the rule editor is
invoked from within the generic editor. Rules that are associated with specific
objects (and, therefore, with particular simulations) are created when the rule
editor is invoked from the scene editor. The former type of rules (those
associated with generic objects) are called internal rules. Internal rules carmot
contain references to specific objects. They can only refer to attributes of the
generic object itself. Internal rules are described in the next section.

Rules associated with specific objects are called external rules. They refer to
attributes of one or more specific objects. External rules often perform the job
of passing values from one object to another. External rules are created and
edited when the rule editor is called from the scene editor. This process is

described later in this chapter.

The rule editor behaves in largely the same way in the two environments.
When it is invoked from the generic editor, the generic editor disappears from
the screen while the rule editing is taking place. When the rule editor is
invoked from the scene editor, the scene editor windows do not disappear.
They remain present because the author may have to point to an object on a
scene while composing a rule.

65

RAPIDS il Authoring Manual _ August 1990 4. Rul_ Authoring

Internal Rules

When you click on Rules in the Object Operations menu, the generic editor
windows close and a new set of windows opens for editing the rules of the
currently selected object. These windows are shown below.

_hjcet (_F_

Add New Object

Copy

Cycle

Delete

Object Attributes

Object Grapbics

Object Handles

Move

Rename

Rotete

J_ j_ F I_.

.

©

©y m4OUS
New rule b7 typiol

Copy rule
Hdlt rule

Delete rule

Rule Authoring
by Menu

The window at the top left displays the appearance of the object. (In this
figure, the generic object is a hydraulic valve.) The bottom window lists the
rules that have already been defined for the object. The menu that at f'trst
appears at the lower left provides global functions, such as adding a new rule;
copying, editing, or deleting an existing rule; and leaving the RAPIDS-II rule
editor, returning to the standard generic editor interface.

The rule editor makes it very easy to create syntactically correct rules by using
a set of menus to compose the rules. The sequence of menus permits only
legal rules to be composed in this way. The first example demonstrates the
authoring of a rule that determines the visual appearance of an object by
setting the object to one of its pre-def'med visual states.

66

RAPIDS II Authoring Manual _ August 1990 4. Rule Authoring

As soon as you choose New rule by menus from the top level of the rule
editor (shown above), then a menu for the types of RAPIDS-II rules appears.
The choice that you make here determines which menu will be presented next.

The last choice on the menu, ABORT, lets you change your mind, and
abandon the process of creating a new rule. The fwst two choices are used to
create complex rules that are if-constructs at the top level. The other choices
are used to create rules that perform a straightforward action, such as assign
some attribute a value, set an object to a certain state, and so on.

T_/pes cf Rules
(if ... then ...)

(if ... then ... else ...)

Assign
SetState

Schedule
Unscbedule

8tartProcess
StopProcess

MoveObJectX
MoveObJectToX

MoveObjectY
MoveObjectToY
MoveObjectXY

MoveObjectToXY

ABORT

Let's build a rule of-the if...then.., type. In English, this rule is to say:
If V-left is greater than zero, then set the state of the valve to Straight,

else set the state to Crossed,

where V-left is an arbitrarily chosen name for an attribute of the valve, the
voltage it receives at its left electrical connection.

To begin with, crick on the second choice in the menu (if...then...else...). A
new window appears, as shown in the figure below. It shows the text of the
new rule, as it has been authored to this point. The text portions between
angled brackets (,: >) are those parts of the rule that remain to be specified.
This window is actually a sophisticated text editor, called SEdit, that is part of
the lnterrisp-D system. You can build rules without using SEdit, but it is often
useful to be able to edit rules using this editor. To learn about its operation,
read the Envos manual that describes SEdit.

The Generic Editor message window displays authoring instructions during
the menu-based rule-authoring process.

67

RAPIDS I1 Authoring Manual _ August 1990 4. Rule Authoring

The Types of Rules menu that was used to select (if...then...else...)
disappears as soon as the selection was made. In its place is the Types of
Conditions menu, which asks you to select a condition for the menu. Boolean
combinations can be selected (in which case the condition menu appears
again).

In this example, we want to specify a greater-than condition, so > should be
selected from the Types of Conditions menu. (As menu selections are made,
the rude text displayed in the SEdit window will be updated to reflect the more
fially fleshed-out form of the rule.)

68

RAPIDS H Authoring Manual -- August 1990 4. Rule Authoring

COS
TAN
LOG

ANTILOG
SORT

ABS

+

X

/

POWER
MODULO

RandcmNumber

MAX
MIN

XPositicnToPercent
YPositicnToPercent
PercentToXPositicn
PercentToYPosRion

Clock

<number>

<attribute-of-this-object >

ABORT

Since > requires numeric arguments,
the Numeric components menu
appears. The condition being written is
that the value of an attribute of the

valve is greater than zero, so
<attribute.of-this.object> is selected.

If the valve contained any user-specified numeric attributes, a menu of those
attributes would appear. Since there are none yet in this example, you are
prompted in the message window to type a name for a new attribute.

an expresslon to replace <Condition>.

You are also asked to specify whether this numeric attribute is of type Integer
or Real.

:ger
Real

ABORT

69

RAPIDS !I Authoring Manual _ August 1990 4. Rule Authoring

The Numeric components menu appearsagainatthispoint.To complete the
condition, select <number>, then in response to the prompt in the message
window, type the number 0.0.

Yhal; type of attribute ts V-left?
Select an expression to replace <numeric2>.

T_>poa number.

Note that as you build a rule by making selections from menus, the textual
body of the rule appears and is modified in the SEdit window to the right. At
this point, the rule body is

(if (V-left > 0.0) then <Effectl> else <Effect2>)

Now that the condition (V-left > 0.0) has been completely specified, the
message will prompt you to specify <Effect1>, the part of the rule that will
apply if the condition is satisfied. For this, the Type of Rules menu appears,
indicating the types of rules that can be specified for this object. The
possibilities can vary from one object to another, depending on how the object
has been defined in the generic editor. For example, this valve has not been
defined as being rotatable, so the rule types Rotate and RotateTo do not
appear on this men,,

Assign
.':letState

Schedule
Unschedule
StartProcess
_ltopProcess

ldoveObJectX
MoveObJectToX

MoveObJectY
ldoveObJectToY
loloveObJectXY

/doveObJectToXY

ABORT

As the menu suggests, if...then...
clauses can include other embedded

if...then.., clauses. In this example,
however, all that is to be done in the
then-clause is to set the state of the

valve. Choosing the SetState option
will bring up yet another menu, which
asks you for either a state name or an
attribute whose value will provide the
state name. Choose the state name

'Straight.

Crossed

t,AouseState

<attribute-of-this-obJect >

ABORT

70

RAPIDS H Authoring Manual _ August 1990 4. Rule Authoring

Add New Object

Copy

Cycle

Delete

Object Attributes

Object Graphics

Object Handles

The final steps involve specifying <Effect2>, the e/se part of the rule. For this
a reduced menu of rule possibilities appears, allowing only an embedded
if...then.., clause or another SetState effect. Select the latter, then select
'Crossed to complete the rule.

At this point, the entire rule has been composed by using the menu authoring
option of the rule editor. The completed rule is displayed in the rule editing
window, and is available for text-oriented editing. You can modify the rule by
clicking at the point where you want to make a modification, and then
backspace and/or type. If you make any editing changes, you should select
the Check Syntax button (see the figure below). It is not necessary to use
Check Syntax if you create a rule using the menu-based authoring and don't
edit the rule by hand. All rules composed using the menu-based rule authoring
system will be syntacticaLly correct.

When you are happy withthe rule,clickon Done, and the editingwindow

willclose.The completedrulewillbe added tothelistintheRules window at

thebottom ofthedisplay.

71 ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS 11 Authoring Manual- August 1990 4. Rule Authoring

Defining •
Continuous
Control

Let's now def'me a different type of object a variable voltage source, called a
Slider Control. In this example we will imagine that negative voltages axe
possible, and that our device is to output voltages between -25 volts and +25
volts. The appearance of the object is:

The solid black part in the middle of the
Slider Control is a handle, which can be
moved left and right by the mouse.

Associatedwith the objectisan attribute
StateLocX, which takes values from 0.0

(when thehandleisallthe way left)to 1.0
(when thehandleisallthe way right).The
rule we want will Assign to a new attribute
OutputVohage a value based on the position
of the handle. A formula that converts

handle position to the desired values is
(50 x (StateLocX - 0.5)).

The behavior of this object is that OutputVoltage should be set to such a value
whenever the handle is manipulated. It is not necessary to use an if...then
construct in such a rule. The form of the rule should simply be

(Assign 0utputVoltage (50.0 x (StateLocX - 0.5))).

After selecting Create rule by menus from the top level menu, the Types of
Rules menu appears.

.'qchedule
Unschedule
.qtartProcess

StopProcess

The selection to be made from this

menu is Assign. When it is selected
the Types of Rules menu disappears,
and the message windows prompts to
enter the name for a new attribute,
which we will call OutputVohage

IdoveStateX
MoveStateToX

IdoveObJectX
MoveObJectToX
MoveObjectY

MoveObjectToY
McveObjectXY

IdoveObJectToXY

ABORT

?2

RAPIDS H Authoring Manual _ August 1990 4. Rule Authoring

Next a menu appears for specifying
the type of attribute that is being
created.

Atom
String

Boolean

ABORT

From this we select Real. This menu

disappears and is replaced by the
Numeric components menu, which
we have already seen. From this
menu we first select x, the
multiplication symbol. The same
menu reappears, and this time we
select <number> and type 50.0 in
response to the prompt in the
message window. Again the
Numeric components menu appears;
now we select -, the subtraction
symbol. Next, from the same menu,
we select <attribute.of-this.object>.

Numeric com l_nent_

SIN
COS
TAN
LOG

ANTILOG
SQRT

ABS

+

X
/

POWER
MODULO

RandomNumber

MAX
MIN

XPositionToPercent
YPositionToPercent
PercentToXPosition
PercentToYPosition

MouseX
Mousey

Clock

<number)

<attribute-of-this-object >

ABORT

At last we get a new menu, which lists the existing numeric attributes of the
Slider Control and<new.attribute>, in case the attribute we need does not yet
exist.

73

RAPIDS II Authoring Manual _ August 1990 4. Rule Authoring

StateLocX
ObjectLocX
ObjectLocY

OutputVoltage

<new-attribute>

ABORT

We select StateLocX , and one last time the Numeric components menu
appears. We select <number> and type in 0.5 in response to the prompt. This
completes the rule, which is reproduced in its f'mal form in the Rules window
after Done is selected from the f'mal menu.

:O_::(.._r._._.._._:_: ::
.(_|_f_(_cUt`Pe_t.$ta.ge_.1e_..C.t_y_jd}5the_.(A_1_.._p_}_._._._._._._._._._`_._._._._._;._._._;_
:::

!_i_i_i_!_!_!_!_i_i_!_!_!_!_!_i_i_i_i_i_i_!_!_i_!_!_!_!_!_!_!_!_!_!_!_!_i_!_i_!_!_!_i_!_!_!_!_!_!_!_!_!_i_!_i_!_i_i_!_!_!_!_!_i_i_i_i_i_!_!_!_i_!_i_i_!_!_i_!_!_i_i_!_i_i_i

External Rules

We now want to write a rule that changes the state of the Valve we defined
earLier, based on the output voltage of the Slider Control. To do this, we need
to write an external rule, one that lets one object refer to the attributes of a
different object. We will have to build a simple simulation using the scene
editor. External rules are created when one enters the rule editor through the
scene editor, rather than through the generic editor. Using the rule editor in
the scene environment involves two differences, the ability to refer to any
object in the scene when def'ming a rule, and the ability to connect two
objects.

The next chapter in the p_Liminary version of the authoring manual describes
how to use the scene editor. For the purposes of this discussion, we will
assume that you have already created a simple scene that includes one instance
of the valve defined in the generic editor, and one instance of the slider
control.

In the genetic editor, we def'med the valve so that its state depends on whether
the voltage coming into it is greater than zero or not, and we deemed the SLider
Control so that it can output voltages from -25 to + 25. What we want to do
now is to add a rule to the Valve's definition, a rule that says that the valve
receives its voltage from the SLider Control.

74

RAPIDS H Authoring Manual _ August 1990 4. Rule Authoring

We begin by making sure that the Valve is the selected object in a scene which
contains both of our objects. By selecting Rule in the scene editor, we get the
top level menu.

blect)nrfl

clock-dlsplay
m

a
0 Izi*m/..aeX r,,,t 0

Ol_*mZ.ott Z.,zz 0

.,,,,_- sa,sw r't l,

Y'I 0

t*_ _ Tra

*lt_,___._---.L_l• .Tit 4S341

,,. I_a (_rallm lJ_,_))... _ (vm_sdm_ (_tspL a_im_)))
,.._ (lINmul (_m4pl ealulr/)))

... urn* (,,,..,./_s _) u ...)

04 ,,.es_ (a_lZl _) _s* ...)

Czeete Copy

Delete Cycle

V-Flip Label
Make connection

New rule by menus
New rule by typini[

Copy rule
Edit rule

Delete rule

Done

L_.I ._ .I.I _1 mu, u_a t_a,"

In" 2.-. 22.0..-'...*.:

-
_ rn r-l (2] 0 0 (:3

l|mll

::::::::::::::::::::::::::: :::...

===::

if:: ((,u,tf.lngY:of::sect;In_1oc_ on:V_-S_C_) ts F&I_). then (On_Tlam(/u_ionstaz't-tro
AssiGF_::is::a.Y? ::)::::::::: :::::::: :: : :: :: :::: :
i_:<{1:si_?::s Fals_;_:tJien:_As_:_n:d(_pla_?:Tr_e))::::::: :::: :::: :::

The only difference between this menu and the two-level menu in the generic
editor environment is the existence of the Make Connection option in the
menu.

75

ORIGINAL PAGE IS

OF POOR QUA_TY

RAPIDS H Authoring Manual _ August 1990 4. Ru_ Aull_ormg

We again select Create rule by menus,
at which point the Types of Rules
menu appears.

Assign
8etState

Bchedule
Unschedule
StartProcess
BtopProcess

MoveObJectX
MoveObjectToX
MoveObjectY

MoveObjectToY
MoveObjectXY

l_oveObjectToXY

ABORT

Selecting Assign gets rid of this menu and brings up the menu of attributes of
the Valve.

Delete Cycle

Y-FIi Label

Pb
Pd
Pc

V-left

<new-attribute>

ABORT

We want to assign a value to V-left, so select that attribute. Since V-left is
dof'med as type Real, our old friend the Numeric components menu appears
again. This time it is slightly different; it includes the option <attribute-of-
different-object>, which is what should be selected for this rule.

76

RAPIDS II Authoring Manual _ August 1990 4. Rule Authoring

XPosltionToPercent
YPesitianToPercent
PercentToXPesition
PercentToYPcsttton

Clock

<number)
<attribute-of-this-object)

:attribute-of-different-object I

ABORT I

When that selection is made, all the rule editor windows and menus disappear
and the scene editor environment resurfaces. To select an attribute of a
different object (that is, other than the valve), you hold down the Shift key
while moving the mouse into the object you want to select, in this case the
Slider Valve. Still holding the Shift key, click the left mouse button. This
selects the object, and brings up a menu of the relevant (in this case, numeric)
attributes of that object.

• : : _'l(":'

.,_ :;;::: :.-IfH::: :':::: :i_'"'Jk lk
!iii_iiii!iiiiiii!!i_iii!i!

To complete the rule we select Output Voltage. The menu disappears, the rule
windows reappear, and the new rule is printed in the Rules window, after
Done is selected.

,U4* 11 _ ..3

In this formula, V-left refers to an attribute of the selected object, the Valve.
Since StateLocX is taken from a non-selected object, it is represented in a
more complex way, specifying not only the attribute name, but also the
specific object name, SliderControlO079, and the name of the scene which
contains the Slider Control, SliderAndValve.

Given the three rules we have written, we could change the Valve to the
Crossed state by moving the handle of the Slider Control to left of center, or
to the Straight state by moving it to right of center.

77

RAPIDS 11Authoring Manual I August 1990 4. Rule Authoring

Check Syntax

Elementary Rule
Actions

Rule Editor Features

The Check Syntax button checks whether a selected rule is well-formed. (See
the figure below.) All rules constructed using the menus of the rule editor are
perforce well-formed. This option is used to check the syntactic correctness of
rules that have been edited in the SEdit window. The message window
presents information about the weLl-formedness of a rule whose syntax has
been checked.

The full syntax of RAPIDS-II rules is presented in the last section of this
chapter.

Rules may consist of a number of nested//-clauses, but eventually there must
be an expression of some elementary action or actions that the rule is to
perform.

The most basic (and, in most simulations, the most frequently utilized) kind
of elementary action is the assignment of a value to an attribute. In the rule
syntax, this action is represented by

(Assign Attribute Value)
where Attribute is the name of some attribute, and Value is either a constant or

an expression that can be evaluated to produce a value. Attributes have types,
such as integer, real, atom, string and boolean. The value that is assigned to
an attribute must be of the same type. (One exception to this rule is that
attributes of integer type m that is, whole numbers m can be assigned real
values. Similarly, attributes of real type can be assigned integer values.)

Another commonly used rule action is Set State. This action is used to set an
alternative-state object to one of its states. A spring-loaded positioner, for
example, could have a rule that says

(if (lnputPressure > SpringForce) then (SetState Positioncr 'Open))
where lnputPressure and SpringForce are attributes of the spring-loaded
Positioner.

Graphic Rule
Actions

Many of the elementary actions of the RAPIDS-II rule syntax provide
graphical controL These commands are used to move or rotate objects or
states. These can be divided into two groups: those that apply to objects as a
whole and those that apply to continuous states.

Obiect.Level Actions

MoveObjectX
MoveObjectToX

MoveObjectY
MoveObjectToY
MoveObjectXY

MoveObjectToXY

State.Level Actiolts
MoveStateX

MoveStateToX
MoveStateY

MoveStateToY
MoveStateXY

MoveStatcToXY
Rotate

RotateTo

78

RAPIDS H Authoring Manual _ August 1990 4. Rule Authoring

Real-Time Rule
Actions

As the above table shows, only continuous states can be rotated under the
control of rules, not objects as a whole. The Move commands for objects
have parameters that refer to pixels. Move commands for continuous
states have parameters that should be interpreted in terms of percent of the
range of the state.

Move commands with To in their names are absolute moves, while those
without To are relative to the current location.

Four elementary rule actions support real-time effects in RAPIDS-II.
Schedule is used to post a future assignment or other elementary action.
Unschedule can eliminate a scheduled action. StartProcess starts a continually

updating assignment or other elementary action. StopProcess ends such an
ongoing action short of its goal.

A Schedule action has two arguments: an elementary rule and a delay time for
the execution of the rule. For example,

(Schedule (Assign Tank's Volume MaxCapacity) EndFillDelay)
or

(Schedule (SetState 'Exploded) DetonatiortDelay)

The delay time parameter is relative to the current time, that is, the time at
which the schedule rule is carried out.

Unschedule takes only one argument, the rule that is to be unscheduled. If
more than one scheduling of the rule has taken place, all schedulings are
removed by the Unschedule. The actual unscheduLing takes place as soon as
the Unschedule is carried out.

A StartProcess elementary rule has three arguments: the attribute to be
regularly updated, the rate at which to update it (expressed in units per
second), and the destination value for the process. The way the simulator
handles processes is to update each attribute that has been put on an ongoing
processes list (by an invocation of StartProcess) according to its rate as often
as possible. Once a destination value has been attained, that attribute is
removed from the process list.

Another way to remove an item from the ongoing processes list is by the
invocation of a StopProcess rule. StopProcess has only one argument, the
attribute that is being regularly updated.

79

RAPIDS11AuthoringManualu August 1990 4. Rule Authoring

Rule Syntax

The syntax of RAPIDS-II rules is presented below. For the most part, the
generic editor and the surface editor have the same rule syntax. Exceptions are
noted.

<rule>

<if-clause>

<effect>

<if-clause>

(if <cond> then <if-clause>l [OneTime]<effect>

else <if-clause>J [OneTime]<effect>)

(if <cond> then <if-clause>J [OneTime]<effect>)

<cond>

(<cond> ANDIOR <cond>)

(NOT <cond>)

(<atomic> is <atomic>)

(<boolean> is <boolean>)

(<string> is <atomic>)

(<numeric> <comp> <string>)
<MouseFn>

<attribute>

<comp>

<>

>

>=

<

<=

;Of type Boolean

<MouseFn>

(MouseDownInHandle <handle>)

(MouseDownlnObJect <object>)

(MouseDown)

<handle>

(<handle-name>

<handle-name>

of <object-name> on <scene>) ;External rules only

<atomic>

<attribute>

<Lisp_atom>

MouseState

80

RAPIDS 1I Authoring Manual -- August 1990 4. Rule Authoring

<Boolean>

(is <cond>)

True

False

<numeric>

(<fl> <attribute>l<numeric>)

(<f2> <attribute>l<numeric> <attribute>i<numeric>)

(<f3> {<attribute>l<numeric>}

MouseX

MouseY

XPositionToPercent

YPositionToPercent

PercentToXPosition

PercentToYPosition

Clock

<number>

<attribute>

<fl>

sin

cos

tan

log

antilog

sqrt

abs

<f2>

+

x

/

power
modulo

random-number

<f3>

max

min

<attribute>

<attr-name> of <object-name> of <scene-name>

<attr-name>

<string>

<attribute>

<Lisp_string>

;Of Lisp numeric type

;Ext rules only

;Of Lisp string type

81

RAPIDS H Authoring Manual -- August 1990 4. Rule Authoring

<effect>

<prim_effect>

(Schedule <prim_effect> <numeric>)

(Unschedule <partial prim_effect>)

(StartProcess <partial_prim_effect1> <numeric> <numeric>)

(StopProcess <partial_prim_effect>)

<prim_effect>

(<Graphicl> <numeric>)

(<Graphic2> <numeric> <numeric>)

(SetState <atomic>)

(Assign <attribute> <numeric>l<Boolean>l<atomic>l<string>)

<partial_prim_effect>

(<Graphicl>)

(<Graphic2>)

(SetState <atomic>)

(Assign <attribute>)

<Graphicl>

Rotate

RotateTo

MoveStateX

MoveStateY

MoveStateToX

MoveStateToY

MoveObjectX

MoveObjectY

MoveObjectToX

MoveObjectToY

<Graphic2>

MoveStateXY

MoveStateToXY

MoveObjectXY

MoveObjectToXY

i The prim_effect of a StartProcess or a StopProcess cannot be an instance of

SetState. It would not make sense to try to set up a process of object state

changes. Also, only attributes of the Lisp numeric types can be the argument of

'Assign' in a partial_prim_effect argument of StartProcess or StopProcess.

82

5

Developing Simulations

The scene editor is the RAPIDS II authoring tool that is ordinarily used most
in building simulations. It is an elaborate tool for composing and testing the
scenes of interacting objects that comprise a simulation.

The scene editor can be used to create single-scene or multiple-scene
simulations. In order to become familiar with the basic functions of the scene
editor, read through the example below, Building a Simple Simulation, and
then try it yourself. Then study the rest of the chapter, which briefly describes
most of the features of the scene editor.

The Role of the Simulation Scene

Simulations in RAPIDS II are divided into a number of interacting scenes. A
scene is a fixed-size graphical view of a portion of a simulation. Simple
simulations typically contain only one scene. More complex simulations may
have a number of interacting scenes.

The form of the RAPIDS II student interface is influenced by the number of
scenes in a simulation. If a simulation has more than one scene, the Options

menu of graphical buttons in the upper left comer of the screen will include an
item labeled View. Clicking on this button (available only in the student
environment) brings up a tree of scene names that comprise the simulation. If
a simulation has only one scene, the Options menu will not have a button
labeled View.

When a simulation does have more than one scene, it can be navigated by
students in either of two ways. One way of navigating is to use the View
menu button to bring up a tree of available scenes, and then to click on a node
labeled with the name of the destination scene. A second way of navigating is

by means of the scene icons on a scene. A scene icon is a graphical object that
serves as a gateway to another scene. When a student double-clicks on a

83

RAPIDS H Authoring Manual _ August 1990 5. Developing Simulations

scene icon, the scene displayed in the scene window is replaced by the
destination scene.

When you are first learning how to use RAPIDS lI, you should work on
single-scene simulations. Once you have mastered the basics of scene editing,
you can progress to examples that include multiple scenes.

iF

Creste

Delet©

V-Flip

Move

Reof_

Copy

CIcle

Label

Open

Rotstc

I
iiii ii

i

Ktll

@

The Scene
Editor Windows

The Scene Editor Windows

The scene editor is a powerful and elaborate authoring tool, and it has many
windows. As in the generic editor and the RAPIDS II simulation
environment, the largest window is the Display Window. This window is
used to build and display simulation scenes.

Immediately above the display window is the Editor Operations Menu, which
is used to select global editor operations, such as saving and quitting. This
menu is also used to move back and forth among the two major scene editor
modes: object operations and simulation. When you begin a scene editor
session, you will be in the object operations mode, which allows you to
create, name, move, and otherwise modify the components that make up a
simulation scene.

84
ORIGINAL PAGE IS

OF PO0 QuAt r

RAPIDS !I Authoring Manual _ August 1990 5. Developing Simulations

Above the editor operations menu is the Message Window, which, like the
message window of the generic editor, is used to prompt you for data that
must be entered with the keyboard, such as the names of objects.

Just below the display window is the Scene Information Window, which is
not shown in the above figure. This window tells the name of the file
containing the scene data that is currently being edited. It also tells when the
f'de was saved. If changes have been made to the f'de since it was saved, the
window will be inverted (white text on a black background).

To the left of the display window are a set of windows and menu items
appropriate to the current editing mode. At the top of these is the Scaled Scene
Window (gray in the screen picture on the previous page), which usually
shows a miniature version of the scene that is parent to the scene in the
display window. If the current scene has no parent, this window is t-filed with
gray. The use of the scaled scene window is described in detail in the chapter
section below called Object Operations.

Just below the Scaled scene window is an area called Object lnfo, where a
variety of information about the currently selected object is displayed.

85

RAPIDS II Authoring Manual m August 1990 5. Developing Simulations

Object Info In
Object
Operations

)blect IrTfr)

ol_a

Left Timer

(12 4_ $ 6) 011_1_

)biect Ooerations

Creatc Copy

Dclctc Cycle

V-FIIp Label

Move Open

Rename :Rotate

Scale Rulea

..._m

IP

E
Klll
Left

Englne

@
On In

(3round Air 0

0, o
Left
Eng"
Inst

Jet Enslnc Starter

S¢¢¢_t ICrI_T_RTI[R Ftle I:_in9 edit.(

Information about the currently selected object appears in a set of windows
just above the object operations menu. From top to bottom, these windows
contain:

The name of the selected object
A scrollable list of the handles of the object, with corresponding

state _

A scrollable list of the attributes of the object, together with their
types and current values

A scrollable list of the object's behavior rules, in an abbreviated
form

The data shown in the object information windows are very useful for
understanding the behavior of simulations during the authoring process.

86

RAPIDS II Authoring Manual _ August 1990 5. Developing Simulations

The Simulation

Operations User
Interface

:lock'au_e/UnPau_e

Pained 4O

: lrrentEvent_

Simulation Attributes

Cloc_ ;nt 40026
MouseX ant 54

MouJeY hat 20

}_o_itS rate ato_t Till

3bject Info

Left Timer

(e2 43e s S) Open

C_zllmt.q late atom Open

ON_n_.c_X hat 4o
O_emI.ooY hat 415

l_ghtOmFut hat 0
_lghtY.all ot hat :1.00
Ts_gg_VolteKe hat 0
Z,tfzOutpm hat 0

/
61 ,.. ,_,a (sezae_e (s_tie))) *no
Ol ... _-,, (sQmi,)) *ao
_! .,, uz-., (_ai¢, ILi_momlmt) _ .,.) *no
_1 ... mira (As_iea Lallomlail) usa ...) *no
(-qtga at_l_) *no
{au_n _pm) *no
(Asi{_ T_iggefVitlige) *no

Snap Compile
Save State Restore State
Pause Rules Pause Attributes

Trace Attributes System Trace

E
Ktll
Lef¢

Engine

@
On In

(3round Air

%xe °

0

Loll
Eng-
lust

Jet Engine grafter

Scene: NEt_TAqTER Ftlt being edit4
i

When an author puts the scene editor into its Simulation Operations mode,
then the Object Into windows are shifted down. Above them appear windows
with the current activity state of the simulation (Paused/Running), that show
the state of the simulation clock, and that list the rules that are presently on the
rule evaluation stack (in the Current Events window). There is also a list of
simulation attributes and their values. Simulation attributes are not associated

with any particular object, but rather with the simulation as a whole.
Examples include the current simulation clock value and mouse information.

This chapter will show you how to interpret the data shown in these
windows, and how the major modes of the scene editor are used to edit and
test simulations.

87

ORIGINAL PAGE IS

OF POOR, QUALITY

RAPIDS II Authoring Manual _ August 1990 5. Developing Simulations

Starting the
Scene Editor

Building a Simple Simulation

In this exercise, you will create a
simulation of a simple circuit that
controls two lights. When the switch is
put into the 'up' position, the upper
light comes on. When the switch is in
the lower position, the lower light
comes on.

Follow the step-by-step process described below to build a simple simulation
like this yourself.

Just as the generic editor can be started in three ways, so can the scene editor.
You can start a new scene editor session by using the Lisp invocation:

(SceneEdReal 'YourSceneName 'ALibraryname)
Where YourSceneName is the name of the scene you are building or editing
and ALibraryName is the name of the library that will serve as the source of
new objects. To create the simple scene described here, you need to use the
library with the Bladefold objects. Type

(SceneEd 'CIRCUIT1 'SIMPBLADEFOLD)
in the executive window. This will open the scene editor on an empty scene
called CIRCUIT1. The Bladefold hbrary of generic objects will be available.

The second way to invoke the scene editor is to use the RAPIDS II top-level
menu. Click on the Scene Editor command, and a dialog box will open that
asks for the names of the scene file and the generic file, as in the screen
snapshot shown below.

Build Simulation

Run Simulation

Run Instruction

Finally, ff a scene editor session was started earlier and
suspended (by a method described later in this chapter),
there will be a shrunken window on the screen. The

window will show the object that was selected the f'wst time
that the scene was shrunk. The window tide is the name of
the scene.

88

RAPIDS H Authoring Manual _ August 1990 5. Developing Simulations

You can resume that editing session either by choosing Expand from the right
mouse button menu in the icon or by clicking on the icon with the middle
button. Either action will open up the scene editor session in the state that it
was leR in.

In this example, you are creating a brand-new simulation, so the scene editor
will open with nothing in the display window.

rvr-r-v _

Create

Delete

V-Flip

Move

Rensme

Copy

Cycle

Label

Open

Rotato

The Generic
Objects Menu

You must create a number of specific objects on the simulation scene. Select
the Create menu item from the Object Operations menu.

Create is the command that lets you create a specific instance of some generic
object. It brings up a list of the available objects -- all those that are in the
currently active library. In the figure below, the Generic Objects Menu for the
'SIMPBLADEFOLD library is shown. This is a scrollable menu with the
names of the generic objects in the library given in alphabetical order. Scroll
the menu until the item 'Switch-3Wire' appears (as in the right half of the

figure below). Click the mouse on this item to select it.

89

ORIGINAL PAGE IS

OF POOR _JALn'Y

RAPIDS 11Authoring Manual- August 1990 5. Developing Sb,mdmions

4-Ways olenoidOperatedValve

Actuating CylinderAssembly

B1ade2

Blade3

Blade4

BL1de$

BladeKinge

BladeLock

BladeLock Cylinder

Conr_-t-21Dosition

Con_oLT..ockCylinder

Ground

Kelicopter-TopView

PY

tie

bel

led

=gate

des

_rellcopter-TopView

Kydraulic]?ump

Light-Round

Pipe-Elbow

ripe-lntersection

]?ipe-T

]_owerSupply

Reservoir

SequenceValve

3hutt.leValve

S pringLoaded_ositloner

Switch-2Wire

Switch-3Wire

Wire-T

lllMil

PY

cle

b¢l

icI1

,tat¢

des

Switch-3Wire is a simple two-position switch. A specific object based on the
named generic object will now be drawn in the display window. The object
will appear in the lower right comer of the window and will move with your
mouse movements until you click the left button to drop it where you want it.

90

RAPIDS II Authoring Manual _ August 1990 5. Developing Simulations

)biect Info

$witch-3Wir¢C078

up (92 _ to 1o) up
Down (_2 _0 10 10)]Down,

C_r_r_ t_te _tom :]Down

o_x _t 7_
Obj_tLo_Y _t _k_

Position the switch on the scene and click the mouse button. The pattern of
dots in the region of the switch shows that it is the currently selected object on
the scene. The Object Info windows now show data about this specific object.

When new objects are created in the scene editor, unique names are
constructed for them. These names axe based on the names of their generic
objects, with some appended numerals. It is a good idea to change the names
of simulation objects to be suitable in the simulation context. To do this, click
on the Rename command in the Object Operations menu. Type in a new name
in response to the message window prompt.

Adding Objects

Because the switch will be used to select between two lights, it would make
sense to call it 'Selector.'

Use Create again to add an instance of the PowerSupply to your simple
simulation. Position it to the left of the switch and use Rename to give it a
narr_ _ 'Main Power Supply.'

91

RAPIDSII AuthoringManual_ August 1990 5. Developing Simulations

Ma|nPowerSupply

_tMlalS t&|ll atom POwel'

obj*oz/.,oox J,,¢ 5.1.
Obj eot.LooY ;,,t 341

Because it is the currently selected item, the pattern of dots is now shown in
its region, rather than in the region of the switch.

Use Create to add a couple of instances of the Light-Round object type and
one of Ground. You should have a scene that looks something like that
shown below.

Ground

_lnr_ultS tare atma (_h_um_

Obj ,,¢ff, oeX bzt].97
Obj_t,LocY Lat 31.3

Drswlng
Background
Elements

A number of different techniques can be used to connect electrical objects,
including creating new Wire-type objects. In many cases, however, it is
sufficient to simply create background graphics that visually connect the
objects.

92

RAPIDS 1I Authoring Manual -- August 1990 5. Developing Simulations

Hold down the right mouse button in the display
window to bring up the WindowOps menu. Select the
option called Edit to bring up the same menu of
graphics authoring tools that is used in the generic
editor. Any drawing elements you create now will
belong, not to any of the objects on the scene, but to
the scene as a whole. Such graphical elements are
called background graphics.

Vindovv Oos
Bury
ChtmgeSceneNeu'ne
Eait
Grid
GHd.On/Off
Htu'clCOlOy
Re¢tielolay
_hHnk

)biect Info

CuttQntS t&te

ObjectLocX
Obj ectLo¢'Z

_rouzl

ttoat

J..,,lt

L_t
r,_ Ditmap

_ Dox

¢irolt

A 0 ul_fe

_--t line

Use the line tool to visually connect the two fights to the ground. When you
have finished modifying the scene in this way, click on Done in the drawing
menu to exit the background editing mode.

At this point, you have built a visual display that doesn't do much. Student
users will be able to manipulate the switch (because of the way its generic
object was defined), but such manipulations won't make the lights change. To
get that effect, it is necessary to define some behavior for them. You must
enter rules for the lights that tell them how to act, based on the state of the
switch.

Select the upper light, then choose the Rules command, The rule editor,
described in Chapter 4, will open.

93

ORIGINAL FP-,q_E !S
OF POOR QUALITY

RAPIDS Ii Authoring Manual _ August 1990 5. Developing Simulations

UpperLi6bt

_lSetm Leas Off

O_wt.g.mX tat 99

O_m_..m_' ta, S45

I

Create Copy

Delete Cycle

Y-F_o a LabelIce connection

Hew rule by menus
Hew rule Ioy typinl

COp7 rule

_dlt rule
Delete rule

Done

im

Using the menus, build a rule for the upper light that turns the light on when
the switch is up. A rule like this

(if ((CurrentState of Selector on CIRCUIT1) SameAs 'Down)
then (SetState 'On)
else (SetState 'Off))

expresses this behavior. Note that the attribute reference for this external
attribute specifies the object and the scenc name as well as the name of the
attribute.

In building the condition, you will specify that the condition is a comparison
of the 'SameAs' type that refers to the <attribute-of-another-object>. When
the rule editor is ready to be told what this attribute of another object is, you
should specify the CurrentState of the switch (which we called Selector in this
example). At this point the rule editor windows will be cleared from the
display window, so that you can point to the 'other-object' that you want to
specify. The way to indicate such an object is to hold down the shift key and
click on the object. When you click on the switch, you will see a menu pop up
that lists its attributes, as in the figure below:

94

RAPIDS 11 Authoring Manual _ August 1990 5. Developing Simulations

)biect tnfo

UppetLight

Cun_ ttte ato_ Off

obj q_t,T.g_X tat

Test Simulate

Here the only existing attribute of the switch is its CurrentState.

When you have finished building the rule for the upper light, build a similar
one for the lower fight.

(if ((Curren_State of Selector on CIRCUIT1) SameAs 'Oown)

then ($e_State 'On)
else ($e_Sta_e 'Off))

This external rule specifies that the light is to go on when the switch is down,
and to go off when the switch is up.

Your simulation is now ready to test. You can perform test simulations
without leaving the scene editor. Thus far, your work has all been done in the
object operations mode. This is the default mode for the scene editor. To
simulate, change to the Simulation mode. At the top of the display window is
theEditorOperations Menu.

Click on Simulation in this menu bar. You'll notice that the menu at the left of
the display window changes. It now displays the Simulator Operations Menu.
Click on the PAUSE button just to the left of the clock window. The clock
will begin counting. If everything has been hooked up properly, you should
see the light go on.

When you are in simulation mode in the scene editor and the simulator is not
paused, you can manipulate switches the same way that students do in the
RAPIDS II runtime environment. Play with your simulation for a while.

95

RAPIDS 1I Authoring Manual _ August 1990 5. Developing Simulations

How Simulation Works

Overview

It is possible to build effective simulation-based courses in RAPIDS II
without understanding in detail how simulation works. This is particularly
true ff you are building simulations Like the simple circuit presented above
simulations that do not schedule or unschedule events and that do not make
use of processes.

In more complex simulations, however, authors often find that they have to
debug their simulations. The scene editor's simulation operations mode makes
it possible to view the values of attributes, to step through rule execution, and
to perform many other detailed actions that help the debugging process. In
order to carry out such actions, however, the author must have an
understanding of how the simulation works.

First consider the simple case of a simulation that does not have scheduled
events or processes. The simulator spends most of its time waiting for the
student to take an action (by clicking on a simulated switch). When a switch is
thrown, its state is reset, and its CurrentState attribute is automatically
changed.

Every attribute has an associated list of rules -- the rules that refer to that
attribute. For example, a 'PowerOn' light might have a rule something Like
this:

(if ((CurrentState of PowerSwitch) SameAs 'On)
then (SetState 'Shining)
else (SetState 'Off))

The CurrentState attribute of the PowerSwitch object will include this rule in
its list of affected rules.

Whenever an attribute changes value, all of the rules that it affects must be
run. In the case of the example above, the rule that sets the state of the
PowerOn light should be run because the CurrentState attribute of the
PowerSwitch changed. (The action portion of the rule -- the SetState _ will
be carried out only if it actually changes the state of the PowerOn light.)

Affected rules are not run immediately when an attribute value changes.
Instead, those rules are put on a list called CurrentEvents. Current events are
all the things that are supposed to happen essentially simultaneously. After aU
the rules that refer to a just-changed attribute have been put on the Current
Events list, then those rules are executed.

After the rules in the CurrentEvents list have been carried out, any graphical
changes that are required are done. If a set of 'simultaneous' rule executions
cause a number of changes in state and changes in the locations and rotations
of objects or object states, then all those graphical effects are displayed at the
same time at the end of the process of carrying out the CurrentEvents rules.

96

RAPIDS II Authoring Manual m August 1990 5. Developing Simulations

The Clock

Scheduled
Events

Simulation
Attributes

Processes

The RAPIDS II simulator runs on computers that are not parallel machines.
That is, they can do only one thing at a time. RAPIDS II simulates real-world
events that may be simultaneous. The conflict (between the computer's ability
to perform only one act.ion at a time and our desire to simulate simultaneity) is
resolved by using a simulated real time clock. When the simulation wants
many things to happen at once, this clock freezes until they have all happened.
Then simulated real time is set to the actual time, and the clock ticks on
normally. The simulator does not fall further and further behind real time,
because it jumps ahead to the current time whenever it has finished all the
'simultaneous' actions it was just working on.

Authors can write rules that schedule events. The simulator checks to see
whether it is time for any scheduled events after it empties the Cu.rrentEvents
list. If scheduled events are due to take place, then they are added to the
CurrentEvents list and the process begins again.

If the time for a scheduled event has already passed, then the clock is set back
to the time at which the event was supposed to take place.

It is possible to write a (defective) simulation that never gets out of the current
events list. For example, the two rules:

(Assign AttributeA AttributeB+ 1)
(Assign AttributeB AttributeA- 1)

form a fight infinite loop. A simulation that includes these rules will never
perform any scheduled events, because the CurrentEvents list will never be
empty. The author has asked the simulator to simultaneously perform two
operations that affect each other, and the simulator will keep working at those
tasks to the exclusion of all else.

There axe a small number of attributes that belong to the simulation as a
whole, rather than to particular objects. These attributes include the simulator
clock, the position of the mouse, and the state of the mouse (whether there
has been a click, for example).

After the CurrentEvents list has been emptied, the simulator checks to see if
any of the simulation attributes have been changed. If so, any rules that refer
to these attributes are added to the CtttrentEvents list for execution during the

next pass.

The simulator maintains a list of active processes. When a rule execution
results in a StartProcess effect, the new process is added to this list. When the
CttrrentEvents list has been emptied, the simulator works through the list of
active processes and carries them out.

The form of a StartProcess effect is

(StartProcess <partial-prim-effect><numeric> <numeric> <numeric>)
An example of a rule that starts a process is

(if ((CurrentState of DraJnValve)SameAs 'Open)
then (Sta/tProcess (Assign CurrentVolume) CurrentVolums 2 0)
else (StopProcess (Assign CurrentVolume))

9"7

RAPIDS II Authoring Manual _ August 1990 5. Developing Simulations

A Summary of
RAPIDS II

Simulation

Simulation Data

This is a rule that sets up a process that drains away a reservoir's volurne at a
constant rate (2 units per second) when the reservoir's drain valve is opened.
The StartProcess specifies the effect that is to be carried out (an Assign to the
CurrentVolume attribute. The next three values are the starting value for the
assignment, the rate (in units per second), and the destination value. Here the
starting value is the value at the time that the process is posted to the active
processes list. The rate of change is 2 per second. The destination value is 0.

When a process reaches its destination value, it is removed from the active
processes list. If the process would have advanced beyond the destination
value, then the simulation clock is set back proportionately. In this way, the
termination effects of every process are certain to be simulated.

In simplified pseudo-code, this is how the RAPIDS II simulation works:
Initialize aimulation

Repeat
if UserEvent (such as mouse action)

then add affected rules to CurrentEvents

if ScheduledEvent

then for each scheduled event

carry out the action and
add affected rules to CurrentEvents

if ongoing processes

then for each process

carry out the action and
add affected rules to CurrentEvents

While there ks a rule in CurrentEvents

carry out the action
and remove the rule from the list

add new affected rules to CurrentEvents

Show all graphical effects of the events

Until user stops the simulation

It is useful for authors to understand enough about how the RAPIDS II
simulator works that they can make effective use of the debugging tools that
have been built into the simulation operations mode of the scene editor. The
next section describes some specialized views of simulation elements that are
provided in RAPIDS II. An understanding of the simulation at the level of
detail described in this section should make it possible to use these views
effectively.

Implicit in the above discussion were references to the major types of data
used by the RAPIDS II simulator. These data elements include objects,
handles, attributes, and rules.

Object Object data includes a list of handles, a list of attributes, a list of
rules, and a set of possible graphical appearances, called states.
For most purposes, the underlying simulation algorithms are
much more concerned with attributes and with rules than with

objects. Objects are natural for authors to deal with, however.
They provide authors convenient access to attributes and to rules.

Handle A handle is a region (necessarily rectangular in RAPIDS II) that
is sensitive to mouse clicks. It is handles that make user events

98

RAPIDS 11Authoring Manual _ August 1990 5. Developing Simulations

Attribute

possible. There are three different kinds of handles: object
handles, state handles, and attribute handles. Mouse actions in
object handles have simulation effects if authors have written
rules that refer to actions in those handles. Mouse actions in state

handles automatically change states. Mouse actions in attribute
handles create temporary assignment rules that send values to test
equipment probes.

All values of interest in a simulation are stored in attributes.

Attributes play a role similar to that of variables in programming
languages. Attribute data includes the type of the attribute (such
as integer or string), its current value, and a list of the rules that
refer to the attribute.

Rule Rules provide the mechanism for changing values of attributes. A
rule includes the literal rule expression that can be edited using
the rule editor, a list of the triggers of the rule m the attributes
that axe referred to, and the owner of the rule m the attribute that
may be changed by it.

In addition to these basic simulation data types (and many others that you
need not be aware of to author effectively), RAPIDS II has a number of
complex data types that you should be aware of. These include simulation
attributes and the current events list, which are described above in this
section.

Viewing Simulation Data
The simulation data described above can be viewed in the simulation

operations mode of the scene editor. This feature can be very useful for
understanding the behavior of your simulation and for debugging it. This
section previews these views of simulation data. The sections on Simulation
Operations and on Simulation Debugging, below, give additional descriptions
of how they are used.

99

RAPIDS 11 Authoring Manual _ August 1990 5. Developing Simulations

Oblect Data Vlew
3L_lect It_tO

Object Graphic
View

Handle Data View

The Object lnfo windows provide
essential object data. At the top is the
name of the object. Just below is the
list of handles associated with the
object. In the box below the handle
box is a list of the object's attributes.
The last box presents a list of rules
associated with the object.

Objects have two types of attributes.
One kind, called system attributes, are
those that can be set by rule actions
other than Assign. These attributes
include CurrentState (which is set by
SetState) and object and state location
attributes (which can be set by a
variety of movement functions). The
second type of attribute is author-
defined attributes.

alma

Left Timer

($2 4N I 4) 01_

_urt_atS tam atom Opel
aid=otr.o,x bat 4o
ObJ e_Y._'_ h,,t 4_.5

_ghtOutp_t bat 0

l_lghtZnp tat bat 100
TtlgglerVottage bat 0
ZmlftOutl: _tt bat 0

(il ... men (saett_te (sasml))) *no

_f ... -,en (s-,stlte)) *no

{if ... ta¢n (,uatga itiCjxtomlm,) ease ...) *no
(11 ... man {Asign I.,aoutlmt) itm ...) *ao
(.t_f_ iklCallalmt) *he

(,kui_, 1.4tmnl_) *no

(,AJsi{n Tri(letV_tsCe) *no

System attributes are listed first in the attribute list, followed by the author-
defined attributes. The first of the system attributes is CurrentState. The value
of this attribute is the name of the currently displayed state in the display
window.

The simulation Display Window shows all the visible objects
on a scene in their current states. Each object's graphic view is
shown inthiswindow.

l I I I

The box immediately below the object name in the Object Info windows
provides a view of the object's handle data. One line of data describes each
handle. A line of handle data includes, first, the name of the handle; second,
the rectangular region of the handle; and, third, the name of the state
associated with the handle. (Only state handles have associated state names.
Object handles do not.) In the figure below, the OnGround handle has the
rectangular area (59 130 34 32) for its region and the associated state named
OnGround. It is often a good idea to give state handles names that are the
same as or closely correspond to their associated states.

_t _I_'F ItdU

OnOtound/lnA|r flwttch

ostofoms4 (19 I_ _ 32) OnGfotm4
(_ iso24 2e) zn,t,tr

I
+_ttt't'eauS taut atom OnOrotsnd

ObjeotZ.o_X bat 39

Obj_tZ.ocY bat 126

Klll
Left

Engtne

@
On In

(3round Air

1oo

RAPIDS II Authoring Manual -- August 1990 5. Developing Simulations

Handle Graphic
View

It is the author's responsibility to make handles graphically distinctive for
students. The simulation appearance should make it reasonably clear to
students which areas are touch sensitive.

In the scene editor, however, a special feature is available to show authors the
location of handles. If an author holds down the middle mouse button on a
line of handle dam, then that line will be highlighted and the corresponding
handle region will also be highlighted in the display window, as in the figure
below.

)bject Info

Attribute Data

Views

OnOround/lnA|r Switch

OnOrouna (s9 13o _ 32) Ot,Orm, n¢

C,,;Irml_ title ttorA OnG, fotsn_L

Ol_t;._X int 39

Obj actY.ocY in! 126

Klll
Left

Engine

@
On Irt

(3round Air

Attribute data can be viewed in a number of different windows. These include

the object attribute list shown in the Object Into windows (as in the above
figures), and a number of more specialized views of attribute data.

Each line of the object attribute list has three (sometimes four) elements. The
first item on the line is the name of the attribute. The second item is the

attribute's type, and the third item is the current value of that attribute. If the
attribute has an associated attribute handle, then the letter H appears as the last
item on the line.

In the figure above, the first line of the attribute list for the OnGround/InAir
Switch presents data for its CurrentState system attribute. The name of this
attribute is CurrentState, its type is atom, and its current value is OnGround.

Attributes can also be viewed in windows that present
the flow of effects in a simulation. When the left
mouse button is clicked on an attribute name, a menu

of attribute options appears. In the case of one of the
attributes in an Object Info attribute list, a menu of
options will appear as at the right.

EclitPause Conclition
Inspect
Pause On/Off
Set
Trace On/Off
Who Affects Me
Wlnom Do I Affect

The details of this menu are described in the section on Debugging
Simulations, below. For now, consider the last two options, Who Affects Me
and Whom Do 1 Affect. When either of these options is selected, a window
opens that shows a network of affects. In the case of Whom Do 1 Affect, the
leftmost (or root) item is the selected attribute. In the ease of Who Affects Me,
the selected attribute will appear at the right, with one or more affecting
attributes on the left. The size of the Affects window will depend on how
large the network of affects is in the simulation. If the network of affects is
large, the window will not be large enough to show all the effects. In that
case, the window will be scrollable. Here are very simple examples of the two

101

RAPIDSI1 Authoring Manual _ August 1990 5. Developing Simulations

types of Affects displays. Both are taken from the simple circuit example at
the beginning of this chapter.

In the figure below, an author has selected the UpperLight object, then clicked
the le_ button on its CurrentState attribute in the attribute List (the third box in
the Object Info window). When the r_nu of attribute options popped up, the
author chose Who Affects Me. A small window appeared that shows that only
one other attribute affects the CcrrentState of UpperLight -- an attribute that
is also called CurrentSt_te, and that has the value Down at this time. (See the
figure.)

_bl.:,T t Irato

UppetLight

Cl==IrQ_t5 tara atom

O_ e_r,.7._R iat
Olld e¢_._' iat

off

_45

(i_ ... me= (Set=R=,) else ...) *_o

.3..

] _tggeJtt.StMe. D ovJl_ C'_ ft_t_Lt.StstlO f f J

H
The textual objects that are shown in the Affects window are attributes, not
objects. Each attribute in this window is represented by its name and its
current state.

In the figure below, the author has selected the Selector switch, then clicked
on its CurrentState attribute in the attribute list at the left, then chosen Whom
Do 1 Affect.

.%lector

;Tp (n =ca to m) _Tp
Down (n =_ tO 10) Dow=_

_l_t&tl atom _owa

ON=_LT._X L_t 75

]illllll_l||ii]ll|mllillllliililllllHJllli

-
..L
"E

102

RAPIDS11 Authoring Manual _ August 1990 5. Developing Simulations

Attribute
Graphics View

In this example, two amibutes (the CurrentState attributes of the two lights)
are affected by the selected attribute. The Affects window can sometimes be
confusing because only attribute names, not object names are used. In this
example, all three different attributes shown in the Affects window have the
same name. Authors can sometimes recognize which object's attribute is
meant by observing the current value of the attribute. (In this example, only
the Selector switch's CurrentState can have the value Down, so it is clearly
the one at the left.)

RAPIDS II provides another way to figure out what object is implicitly
referred to by an attribute name in an Affects window. If the author clicks the
middle mouse button on one of these names, the object that has that attribute

will be highlighted in the Display Window, as in the figure below.

3bject lnfo

Selector

up (n s_ to 1o) up
Dowa (N _O010 10) Down

Cut.stmt.qtate atom :Down

O_.X_x im 75

In a sense, attributes have no graphics. Only objects have graphics. In order
to highlight an attribute graphically, the scene editor highlights the object. If
the object to be highlighted is on a different scene, that scene appears in the
scaled scene window, with the object highlighted.

This technique for highlighting an attribute's object graphics -- clicking with
the middle button on the attribute data m is not restricted to use in the Affects
window. An author can also middle-click on an attribute in the Object Info
window's attribute list, and the corresponding object will be highlighted.

Some attributes are associated with particular locations on an object. These are
the objects that were given attribute handles in the generic editor. If an author
middle-clicks on the data of such an attribute, only the attribute handle is

highlighted, not the entire object.

103

RAPIDS 11 Authoring Manual m August 1990 5. Developing Simulations

Simulation
Attribute Data
Views

-:im__tation Attri_)ute s

Rule Data View

Shnulation attributes a the universal
attributes associated with the clock
and the mouse m can be viewed in

much the same way as ordinary object
attributes. In the Simulation Opera-
tiorm mode, this window appear just
above the Object Info windows.

_,t o

]_.omY L_t 11

_ t_te atom "t,Xp

Clicking on simulation attribute data with the leR mouse pops up the standard
menu that lets an author ask for an Affects window display for the attribute.
Clicking on one of these attributes with the middle button has no effect,
because they do not have an associated object that could be highlighted.

Simulation attributes may appear in Affects windows, just like object
attributes. The attribute options menu works for them in such windows as
well.

Below an object's attribute list in the Object Info windows is its rules list. The
rules in this list are shown in an abbreviated form. At the end of an

abbreviated rule, there may be a tag that gives additional information about the
form of the rule in the environment.

If an abbreviated rule has a _iling *nc, it means that the rule has not been
compiled in this environment. (All the rules of a scene can be compiled by
using the Compile command in Simulation Operations mode.) Compiling the
rules makes them run a little faster than they would otherwise.

If an abbreviated rule is followed by *nw, it means that the rule is not
working in this environment. There are two reasons that a rule might not be
working in an environment. The most common reason is that the role refers to
objects from another scene that has not been loaded in the current scene editor
session. Such rules are inactive in the simulation operations mode, even
though they might work perfectly in a complete simulation. One way to avoid
this problem is to always require that the scene editor load all related scenes.
This is done by giving the Load Subscenes? field of the dialog box the answer
T. (See the figure below.)

I,.n,.u. oni
104

RAPIDS il Authoring Manual -- August 1990 5. Developing Simulations

The second reason that a rule could be marked as *nw, or not working, is that
it could have a syntax error. This will not happen ff the rule was built using
menus, but can happen when rules are edited using the SEdk editor.

The abbreviated form of a rule in the rules list ordinarily makes it impossible
to be read what the rule actually does. Fommately, there is an easy way to

expand the rule into a more readable form. If an author clicks the left mouse
button on one of these rules a list of rule options appears in a menu, as in the

figure below.

gimulation Attributes

C'look i,q 1,$4445

VommX ;nt 42

_.ouseY _t 14

_M:o_IeS tare stont _'p

3biect Info

LowetLight

obj_I_cx _t %0o

se

. Pause On/Off

The use of these options is explained in the section on Simulation Debugging
later in this chapter. The second option, Expand, makes it possible to view the
data of a rule. When Expand is selected, the standard Interlisp SEdit window
opens and displays the selected rule in detail. The rule is shown as a
conventional C-Lisp S-Expression, so it has many sets of nested parentheses,
as can be seen in the next figure.

105

RAPIDS I! Authoring Manual _ August 1990 5. Developing Simulations

-_imul,_tion .:Xttrdo t_t e _

h,t 15445
_ueX bzt 43
]_3_eY Lit 14

]_x.weS t_te t_ 12[

LowerL|sht

Rule ef object LewerLl£ht easceneCIRCUITl

(if ((CurrentStaCe of $elec_or on CIRCUIT1) Saaeks 'Down)
then ($etState 'On)
else ($ecStete "Off))

(ial ... m,m (Se_t_e) else ..) *no

In this expanded view of the rule, authors can take action to cva/,mre a portion
of the rule. Clicking the middle mouse button on a part of the rule makes the
value of that pan of the rule appear in the message window. For example,
clicking on the parenthesis in front of 'CurrentState of Selector on
CIRCUITI' makes the message window display (CurrentState of Selector o,.
CIRCUIT1) m Down. Clicking on the next outermost level of parentheses
evaluatesthelargerrulesegment,'((CurrentState of Selector on

CIRCUIT1) SameAs 'Down).' The message window saysthatthisrule
segment is currently True.

(_rrmtState of Selector on ClRCUrrl) -- Down

Value of rule segment: True

J Rule ef object Uw_rLil[ht eu scene C_RC_dIT 1 Ji

l_(if ((Current, State of' 8elector on CIRCUITI;) Sane/is 'Oovn) r
] v;_ then (SetStete 'On) L"

_ -- (SetStete '0,,)) PI"i

Rule data are displayed in abbreviated form in the object info windows and in
the Current.Events list. The same features just described for getting and
evaluating expanded views of rules from an objects rule list can also be
applied to rules in the CurrentEvents List.

RAPIDS lI provides additional views of rule data in the rule editor itself,
which is described in Chapter 4 of this manual.

106

RAPIDS II Authoring Manual m August 1990 5. Developing Simulations

Rule Graphics
View

If the author clicks the middle mouse button on an abbreviated rule, the object
that has that rule will be highlighted in the Display Window. This works in
essentially the same way that the Attribute Graphics View (described above)
does.

Editor Operations

The highest level menu in the scene editor is the Editor Operations Menu. It is
always displayed while the editor is nmning.

II V|_ O_j_'_' Op$. W fit(g :EZi'

I/

This menu, which is positioned just above the display window, is used to
change the modes of the scene editor. While carrying out the exercise of
creating a simple simulation scene, you carried out most operations in the
object operations mode. To test and debug your simulation, you used the
simulation mode.

The View command is described below in the discussion of multi-scene

simulations. This menu item brings up the parent scene of the current scene in
the Display Window. An author can work up through a hierarchy of scenes
by repeatedly clicking on View.

The Object Ops. command puts the scene editor into the object operations
mode. In this mode authors can add objects to the simulation, move them,
delete them, create and edit rules, and so on. This mode is used to build
simulation scenes and Link them together.

The Simulation command puts the scene editor into the simulation operations
mode. In this mode, authors can run simulations interactively. Many special
debugging windows axe available for inspecting simulation data.

The Write command is used to save the currently displayed scene on your
disk. Be sure to use it whenever you have made changes. Notice that some
changes to a simulation scene are fairly subtle, and you have to work at it to
remember to save. For example, suppose you delete an object on one scene
that is connected to an object on another scene. You not only need to Write the
scene with the deleted object, but also the scene that it was connected to. Be
sure to bring up that scene and Write it to your disk, as well.

The small window below the display window will be inverted when changes
have been made to the current scene but it has not yet been saved. After you
do the Write, you'll see this window change back to the normal black text on
white background.

107

RAPIDS H Authoring Manual _ August 1990 5. Developing Simulations

The Ex/t option lets you leave the scene editor. If you have made changes that
you haven1 saved, the message window will name these altered but unsaved
scenes. In this case, you'U be offered a menu of three choices

Exit without writing files
Write altered files before exiting

Cancel exit

The first option lets you leave the editor and abandon all changes that were not

already explicitly saved with the Write command. The second op.tion will
automatically save all the altered files and then quit. The third option interrupts
your Exit command so that you can continue editing. If you want to save the
changes made to some scenes but not the changes made to other scenes, you
can go to the scenes with changes you want to save and use the Write
command there. Then select the Exit command and choose the Exit without

writing files option. Ordinarily, of course, you will want to save all the
changes you have made.

Object Operations

If you worked through the example at the beginning of this chapter, then you
are already familiar with many of the commands of the object operations
menu. This section reviews those commands and presents others you may not
have used yet.

.,Joiect Oloeratior_

Create Copy

Delete Cycle

V-Flip Label

Move Open

Rename Rotate

Scale Rules

108

RAPIDS I1 Authoring Manual _ August 1990 5. Developing Simulations

Create

Copy

Delete

Cycle

V-Fllp

Choosing the Create option brings up the menu of generic objects. The
Generic Objects Menu is a scrollable list of all the objects in the current
library. Click on the name of the object you want to use as a template for a
new specific object. If you change your mind and don't want to create a new
specific object, just click on the title bar of the genetic objects menu (the black
bar with the word GENERIC-OBJECTS at the top).

Sometimes it is difficult to remember what kind of object is meant by a
particular name in the generic objects menu. If you are using one of the
supplied libraries, you may want to use the Appendices to this manual to help
you select objects by their names. The scene editor also has a built-in feature
that helps you identify generic objects. If you point to an object name and
hold down the middle button, a picture of the object type will appear above
the menu.

To create a new specific object of the same type as the selected object, choose
the Copy command. The new object (the copy) will then be the selected
object, and it will move with the mouse. Cricking the left mouse button will
deposit the object at the location of the mouse pointer.

Newly copied objects have the same behavior as the originals, because they
have copies of the rules of the originals.

If a scene icon object is copied, the new object will not point to the original
scene (or any other). If you want it to function as a scene icon, you will have
to Open it.

The selected object is deleted. It disappears from the scene. If the object was
labeled (see below), then its label will also be removed. Rules that referred to
attributes of the deleted object should be edited appropriately (perhaps by
replacing a deleted attribute with one that still exists).

The rules of other objects that refer to deleted attributes will not work. In the
Object Info windows, such rules in the abbreviated rules list will have a *nw
appended to indicate that they are not working.

The Cycle command is used to change the state of the selected object.
Repeatedly choosing Cycle steps through the available states. You may need
to use this option to put an object into a state that accords with its context in
the scene. That is, you wouldn't want to build a scene in which the objects
are in conflicting states. Use cycle to put objects into compatible states before
going into the simulation mode.

If an object with a continuous state is cycled, the state part will move through
ten percent of its extent each time that the Cycle command is selected. (The
increment of ten percent can be edited by the author.)

V.Flip is used to make an object do a vertical flip on the scene. More
formally, the object is displayed upside down and mirror imaged. By
combining the Rotate and V-Flip commands, you can show an object in any
orientation.

109

RAPIDS11Authoring Manual _ August 1990 5. Developing Simulations

Label

Move

Open

Rename

Rotate

Scale

Rules

Objects that have text components may look a Little strange after undergoing
V-Flip. The text is not actually flipped, but is put into a different relative
position. You may want to avoid flipping objects with text elements.

A specific object can have one or more associated labels on its scene. Labeling
can mean much more than adding textual elements. Any of the graphic
primitives of the Pr_mitive-Ops menu can be added to an object.

Using the Label command, you can add static graphical elements to any object
in a simulation. Some authors use this technique to build short graphical wires
and pipes to visually connect neighboring objects.

Ifyou chooseMove when thereisa selectedobject,thenthatobjectwillmove

withthe mouse. CLickingtheleftbuttonwillpositiontheobjectagain.Ifno
objectisselected,thismenu command willhave no effect.

Using Open converts the selected object into a scene icon. It will serve as a
link to another scene. To open the scene that corresponds to a scene icon, the
student must double-cLick on the scene icon object. Double-clicking means
cLicking twice in very close succession without moving the mouse. When a
scene icon is opened this way, the scene in the Display Window is replaced
by the scene associated with the scene icon.

Afteryou clickon Open you willbe asked toclicktheleftbuttonifyou want
totypeinthename ofthe scenethattheobjectshouldrepresent.Ifyou click

theleftbuttonand typeina scenename, thentheselectedobjectwillbe linked
tothenamed scene.Ifyou clicktherightbutton,a new scene willbe created
and giventhename ofthespecificobject.

Thiscommand letsyou change thename ofa specificobject.When you build
a simulationyou may have sceneswith many objectsbased on the generic
objectname plus a number. You can replace these names with more
appropriateones.Using meaningfulnames willhelpyou inconstructingyour

simulationand may helpyour studentsduringsimulationtraining.

The Rotate menu command rotates the selected specific object 90 degrees
counterclockwise. The text elements of an object are not rotated, but are
simply repositioned. You may prefer not to rotate objects based on generic
types with text elements. It also usually works better to wak to label a specific
object until after you have rotated it.

Scaring has not yet been implemented. A message to that effect appears in the
Message Window when the Scale command is selected.

The Rules menu command opens the rule editor for creating and editing
external rules. See Chapter 4 for a description of rule editing.

110

RAPIDS ii Authoring Manual _ August 1990 5. Developing Simulations

Simulation Operations

The scene editor lets you test your simulations without using the run-time
simulation driver. (That is, you don't have to quit the scene editor and go into
the student simulation mode.) To get into simulation mode, click on
Simulation in the editor operations men_

In the simulation mode, the configuration of windows to the left of the display
windows changes, and the object operations menu is replaced with the
simulation operations menu.

Simulation Attributes

Object Info

Mouse Actions In
the Simulation
Mode Windows

Cloek ins 40026

_ottmX iat 54

Mo=eeY iat

XotweSttte flora _'p

Ope,t

Left Timer

(82 4_ 6 5) Open

Ct_¢t'entS ttte ttom Open

Obj_tI,c_X int 40
Obj aetZ.oeY int 415
XightOt_tpttt int 0

_.ightY_p ttt int 100

TtlggeeVolttge iat 0

X._ftO_ttp=t int 0

(if .., men (S_',e6uAe($ttState))) *no
(if ... _en (SttSttte)) *no
(iS .,, rata (Assign tiOttOutlmt) Itvt .,,) *no

Ol ... men (Asign LettOutlml) etse ...) *no
(,Mtign ili_tllnlmt) *no
(AsSign Leltlnl_t) *no

(Attain T_ggIfV_tIgI) *no

Snap Compile
Save State Restore State
Pause Rules Pause Attributes

Trace Attributes System Trace

'_-_,'_'m=_kT_ A Simulation can be Paused Or Running. A little

window labeled Pause/UnPause displays a label thatPained describes the current state of the simulation. Clicking in
this window toggles the simulation between these two
states.

Ill

ORIGINAL PAGE IS

OF POOR Q_A_FY

RAPIDS !I Authoring Manual -- August 1990 5. Developing Simulations

To the right of the Pause/UnPause window is a window
that displays the simulator clock, in seconds. See the
section on How Simulation Works, above, for an

explanation of the clock. Clicking in Otis window has
no effect.

0

Just below the pause window and theI p't'(+ r-lt _ r,,F t--+

(_)mmm_) *_ clock window is the CurrentEvents
window. This window shows a list
of the rules in the CurrentEvents list.

['he role of this list is explained above in How Simulation Works. In brief,
the rules in CurrentEvents axe the currendy pending rules that must be carried
out 'simultaneously.' The rules are shown in an abbreviated rule form in this
list (See the section entitled Viewing Simulation Data.) Clicking with the left
button on an abbreviate rule brings up the menu of rule operations, described
below in Debugging Simulations. These rule operations axe actions that
authors can apply to rules to try to understand what the simulation is doing.
Holding down the middle button on one of these rules will highlight the object
that owns the rule in the display window. The right button anywhere in this
window will bring up a special menu of CurrentEvents Operations that axe
explained in the section on Debugging Simulations.

E'.'xocute Top Rule l
Redi$1olay IUndo laet execution

(It ... tJum (Set.State) else ...) *a©
(It ... the= (SetSt_te) else ...) era©

ilt++AI ,+_tir_n Attribute'_

Clc_lc ;.,t 3"/_.$g

3£;o=_eX ;.,t 46

VotumY L_t 14

]kEotl4N_ re,re ttom IJ'lp

Below the CutrentEvents window is a window labeled SimulationAttri-butes.

This window displays a data view of the attributes that do not belong to any
ot =t

A left mouse button click on one of these attribute data lines will pop up the
Attribute Operations menu, which is discussed below in the section on
debugging simulations. The right button menu is also useful in this window.
If an attribute is not currently traced, then changes in the attributes value will
not be posted in this data view. The Redisplay option in the right button menu
can be used to update the attribute data display with the latest values.

Below the Simulation Auributes window is the set of Object Info windows,
which are discussed earlier in this chapter. Some of the actions that can be
taken in these windows axe explained below in the Simulation Debugging
section.

112

RAPIDS II Authoring Manual _ August 1990 5. Developing Simulations

Display Window
Aotlons

Clicking on an object in the scene editor's simulation mode will have different
effects, depending on whether the simulation is paused or running. If the
simulation is paused, clicking with the left button will select the object, just as
in the object operatiom mode. The object will not be highlighted in the display
window as it would be in the object operations mode, however. Its object data
will be displayed in the Object lnfo windows at the lower left corner of the
display.

If the simulation is nmning, then, if the object has state handles, a click on a
handle puts the object into the state that corresponds with that handle. If the
object has an object handle, then any rule that referred to Mouse Down in
Handle of the object will be executed.

If the object has an attribute handle that has been designated as a Probe, then
that attribute will be made the current probe attribute. If the attribute handle
has not been designated as a probe, then the corresponding attribute will be
connected to the cuxrently designated probe attribute, if there is one. See the
section on Authoring and Using Test Equipment, below.

113

RAPIDS 11 Authoring Manual m August 1990 5. Developing Simulations

Snap The Snap command is used to create
exact copies (called snaps) of

rtions of the display window.
ese snap windows can be

positioned anywhere on the screen.
A convenient place to put snap
windows is on the scaled scene

window in the upper left comer of
the set of simulation editor windows.

In the figure at the right, a snap of a
slider control object has been placed
in this area. Snaps stay on the screen
until the user closes them (using the
Close command on the right button
menu). When the user changes the
scene in the Display Window, the
snaps are still present.

:lock

• Jrr'Pr t_ ',/_rJl:_

Snaps are fully functional views of
the snapped objects. When a switch
is manipulated in the display
window, any affect on the snapped
object will be displayed in its snap
window. Snapped controls can be
manipulated as well, and will have
exactly the same effects that they
would ff the object were manipulated
when its scene is displayed in the
Display Window.

Pained 0

(a_a,lga $t-,,Outtmt) *tto

;imul+tion Attributes

Clo,]t iat 0

:la:ouNX ;,st 40

:M:ottaeY htt k:L

[ottseStttte tto,, ?d'p

)tgject Itlfo

.qllderControlOll3

H_._I.e (|74 88 l(g 2d) HIIlrl¢ll@

Currlmt5 t&te ttom _l;tttctle

SttttlZ,ocX ree.t 0.1

Obj eet:LocX mt 160

Obj eat:Lo¢M' reel _,

S_mOtttput retl ,_,

Compile

When the Snap command is selected, the pointer will change shape (to the
Interlisp Expanding Box cursor). The user can then drag out a rectangle to
select one or more objects on a scene. When the mouse is released, the
snapped window will appear.

Snap windows have their own right button menu. To get rid a subscene, use
the Close subscene option from its right button menu. To put a subscene in a
different location, use the Move subscene option from this menu.

When a simulation is built for use by students, all the rules in the simulation
are automatically compiled to native machine code. In the scene editor
environment, however, rules are not ordinarily compiled, in order to avoid
long compilation delays when rules are edited.

114

RAPIDS I1 Authoring Manual D August 1990 5. Developing Simulations

Save State

Restore State

Pause Rules

Pause Attributes

Compiled rules run much faster than uncompiled rules. If a simulation seems
to be running slowly, an author can often speed everything up by choosing
the Compile command. After this command is selected, there will be a delay
while compilation takes place. As the rules for an object are compiled, the
name of that object appears in the message window.

Save State makes a snapshot of the current state of the simulation, which can
later be restored using Restore State. When you select Save State, a prompt in
the message window asks for the name of the state to be saved. Type the
name and the Return key.

RestoreState inserts a

saved snapshot of a
state of the simulation,
one of those previously
stored using the Save
State command.

I Snap
Save State
Pause Rules
Trace Attributes

L----_,iVl ;I1; i_l II diN| I [_t| [lllilk,_[_"t I[".J

_LowerOn I
_UpperOn I

Pause Attributes 11System Trace sctnt:CIRCUITI

When this command is chosen, a menu of the saved states appears. Selecting
the name of the desired state has the effect of restoring that state.

Developing RAPIDS II simulations, like computer programming, sometimes
calls for a debugging phase. You may build a scene and find that it does not
behave exactly as you expected it to. The scene editor includes a number of
tools to help you figure out what you might have done wrong in constructing
a scene. These tools include the ability to set and remove pauses at particular

objects, the ability to arti.ficially assign attributes certain values, and a trace
facility for studying the sequence of effects during simulation on your scene.

The details of simulation debugging are treated in the Simulation Debugging
section of this chapter, below. Briefly, both rules and attributes may be
paused. When a rule is paused, the simulation stops when the rule is about to
be executed.

In order to get through the paused rule, it must
be executed 'by hand,' which is done using the
Execute Top Rule command of the Current
Events Operations rrenu.

Execute Top Rule
l:leclisplay
Undo lastexecution

The Pause Rules command has the effect of marking every rule as paused,
so that the simulator will pause before executing any rule.

Attributes can also be paused. When an attribute is paused, the simulator
stops immediately after changing an attribute's value. The Pause Attributes
command makes the simulator pause after changing the value of any object
attribute in the simulation.

Pauses can result in apparently incongruous simulation appearances. As the
figure below demonstrates, a pause may intervene between the execution of
two rules that are supposed to be simultaneous. In the figure below the lower
light has been put into its 'On' state, but the upper light has not yet been put
into its 'Up' state.

115

RAPIDS H Authoring Manual _ August 1990 5. Developing Simulations

Trace Attributes

System Trsce

Pained 236

When an attribute is being traced, its data view is refreshed whenever the
attribute changes. The Trace Attributes command causes all the object
attributes in a simulation to be traced. Tracing attributes slightly decreases the
responsiveness of a simulation, because time is spent rewriting data views.

This command is not yet implemented. A message to that effect appears in the
Message window when the System Trace command is selected from the menu
in the S_on Mode.

In the future, this command will be used to trace the system attributes.

116

RAPIDS H Authoring Manual _ August 1990 5. Developing Simulations

Run-Time Corrections

Undefined
Attributes

If an author builds every behavior rule using menus, then the simulation will
be syntactically correct. This means that every rule will adhere to the
requirements for rule structure. Unfortunately, syntactic correctness alone will
not guarantee that the simulation can run (much less that it will run as the
author expects). In order to run, a simulation's behavior rules must also be
semantically correct. Rules can fail during execution if they have undefined
attributes values or if they apply operations to attributes that have values
outside of the domain of the operation. This section describes how the
simulator responds to undefined-attribute errors and to out-of-bounds errors.

When a simulationisloaded,allof itsattributesareundefined.Then, when

thesimulationisstarted(as,forexample,when theauthorclickson thePause

buttonin the simulationoperationsmode in the scene editor),allof the
constantassignmentrulesarerun once.A constantassignmentruleisa rule
thatassignstoan attributea constantvalue-- a particularnumber oratom or

string-- ratherthanassigningsome functionofotherattributes.

This initial assignment of constants will affect all the rules that refer to the
attributes that just received values. Those rules will be placed on the
CurmntEvents list, and their execution may result in the propagation of effects
to still other rules. In this way, most of the attributes of a simulation will lose
their undefined status and will acquire values at the time that the simulation is
started.

Sometimes, however, an attribute will be referred to (by an executing rule)
when it does not have a value. RAPIDS II is ordinarily able to handle this
situation by postponing execution of the rule. It carries out other pending
rules first. One of these rules may assign a value to the undefined attribute.
This method will work if the author has designed a simulation so that certain
attributes, those that function as sources (such as electric power supplies and
hydraulic pumps), are given initial values by constant assignment rules. Other
assignment rules in the simulation propagate effects from these sources
through the simulation.

Sometimes a list of object attributes (in the Object lnfo window, for example)
includes undefined attributes. The value field of such attributes will be
displayed as ? ?.

If an author's rules don't provide a value for an attribute that serves as a
source, then the simulator's strategy of postponing rules will not succeed.
The simulator will detect a semantic error, called undefined attribute. When
this happens, the simulator pauses and it re-posts the rule to the Current
Events list. It then opens a special Undefined Attribute Window. See the
figure below.

117

RAPIDS Ii Authoring Manual m August 1990 5. Developing Simulations

im I

The window at the lower left comer of this figure is an undefined attribute
window. It presents the text of the rule that encountered the undefined value
in an expanded form. If the author holds down the middle button in the
window's title bar (the area that says 'Rule of object SLiderControll0113 on
scene NEWFILE in the above figure), then the obiect that owns the rule will
be higldighted in the display window. (If the object is not in the display
window, then a scaled version of the scene that it is in will appear in the
Scaled Scene Window at the top left comer of the screen, and the object will
be highlighted there.)

The undefined attribute window is a rule evaluation window, just like the
expanded rule discussed above in the subsection on Rule Data Views in the
section on Viewing Simulation Data. This means that you can click on
portions of the rule to underline rule segments.

I Rule of obtect SllderControl0113 on scene NEWFILE I(AssIQn SumOutpuc _StateLocX + 8umOutputl)

118

RAPIDS II Authoring Manual w August 1990 5. Developing Simulations

These segments will be evaluated and the results printed in the Message
Window above.

'l_._i- ._6;'_A-=::_-_p/fl,

_uaOutput -- undefined
StateLocX -- 8.1

Value of rule secjMnt: undefined

The Undefined
value Menu

A menu at the top of the undefined
attribute window gives a number of
options for dealing with undefined
attribute error. The title of this menu

begins with 'Undefined value' followed
by the name of the attribute that is
undefined. In this example 'SurnOutput'
is not def'med.

l_j';tl _ll, ,z_, i'r.l t, t_ - - --.'tp, ,,tS/_l _,q_
Set attribute value

Attribute ops
Resume simulation
Abort simulation

If the author chooses Set attribute value, the first option in the menu, then the
message window will prompt for a value that should be used in this execution
of the simulation. (See the figure below.)

I_ :-_-_T.I. [_T,,n_ |.|,¢

The value of the attribute (SumOutput of SliderControl0113 on NEWFILE) is undefined.
Type the valne tap be asslj[ned te the attribute SumOutput.
The value must be a number. >>

Note that the value entered will not be permanently assigned to the attribute.
That is, the next time the simulator is initialized, the same problem will occur
again. Nonetheless, this is often a good choice for an author to make in order
to test the behavior of the simulation when a certain value is used for the

simulation. If the simulation behaves appropriately, the author can later add a
constant assignment rule that gives the value to the attribute.

When the author sets an attribute value, the scene editor will offer to build a
constant assignment rule that gives that value to the attribute. If the author
agrees, that value will serve as an initialization value for the attribute when the
simulation is run again. (If automatic rule creation is carried out during a
scene editor session, the author must be sure to Write the changed f'de in order
to save the change.)

The second choice on the menu, Attribute ops, gives
authors a standard menu of attribute operations. This
menu applies to the attribute named in the menu title

in this case, 'SumOutput.' Two of these options,
Who Affects Me and Whom Do I Affect are described
above in the section on Viewing Simulation Data. The
other options are discussed below in the Simulation
Debugging section.

Edit Pause ConditJon
Inspect

IObject BunOle
IPause On/Off
ISet
ITrace On/Off
]Wl_o Affects Me
IWhom Do I Affect

119

RAPIDS II Authoring Manual _ August 1990 5. s_ao_

Out of Bounds
Values

The thirdoptionon the Undefined value menu isResume simulation.This
commm_ closestheundefinedattributewindow and attemptstocontinuewith
the simulation. Since the simulation will resume with the rule that was

paused, this choice will be successful only if the author has taken steps to
give the under'reed attribute a value while the simulation was paused. This can
be done by using the Set attribute value option in the menu, or by using Set
from the Attribute Operations menu (shown immediately above).

The fourth choice on the Undefined value menu is Abort simulation. This
command closes the undefined attribute window but does not continue with
the simulation. This is an appropriate choice if the author wants to carry out
actions using the object operations or simulation operations menus, rather
than to continue simulating at this time.

The second kind of semantic error that RAPIDS II can detect is out of bounds
errors. Rules can include calls to arithmetic functions that appropriately apply
to only a limited domain of values. Here are the domain restrictions that
currently apply to such function calls in these rules.

Function Domain Error Condition
LOGn n<O

SQRT n n < 0
x/n n = O

x MODULO n n - 0
ANTIL£)G n n>87
SetStatexn n notinthesetofstatesofx

If any of these domain error conditions are detected when the simulator
executes a rule, the simulator pauses and it re-posts the rule to the
CurrentEvents list. It then opens the Out of Bounds Attributes windows, as
shown in the figure below.

120

RAPIDS I! Authoring Manual -- August 1990 5. Developing Simulations

Rllle Of ekkCC MldcrC_l_l'tl# l lJ ea f_cm_ NZ'lq_F*JZ.Z

(lllt_ LOgOUtpM?, (LOG |tit, lLoc:X))

r I

The largest of the new windows, which is at the bottom of the group of
windows, is an executable rule window, similar to the one that is opened in
the case of an undefined attribute error. It presents the text of the rule that
encountered the out of bounds value in an expanded form. If the author holds
down the middle button in the window's title bar (the area that says 'Rule of
object SliderControll0113 on scene NEWI::ILE in the above figure), then the
object that owns the rule will be highlighted in the display window. (If the
object is not in the display window, then a scaled version of the scene that it is
in will appear in the Scaled Scene Window at the top left comer of the screen,
and the object will be highlighted there.)

You can click on rule segments in the executable rule window and they will be
underlined in the expanded rule view.

121 ORIGINAL P#,GE iS
OF POOR QU.IiZI_

RAPIDS II Authoring Manual _ August 1990 5. Developing Simulations

Rule of object SliderCoatroi0113 on scene NE3_rILE

(As81gn LogOueput,ILOG _tateLocX_)

At the same time, the selected segment will be evaluated, and the results of its
evaluation will appear in the message window, as shown below.

StateLocX -- O.O

Value of rude segment:
Can't compute the LOGof • number less th•n or equal to 0.

Needed
Attributes

When an out-of-bounds error is encountered, the message window describes
the nature of the domain constraint violation.

A window above the executable rule window is the Needed Attributes
window. It lists the attributes with values that violate the domain constraints

of the operations that are applied to them in the rule. In the case of this
example, only one attribute is a problem, StateLocX.

If the author clicks on an attribute in this list, the menu of attribute operations
pops up. The same attribute operations discussed in the sections Viewing
Simulation Data and Simulation Debugging are available.

i i i i i iiiiEa tp•u. condi onII 67 II
_iiJiii[iiiil]Insf3ect II U
i[i_[[i}i[]Oloject Bundle _l
_ii_i_[_ili!i|PeuseOn/Off' _1

_Tr_ce On/Off
_Who Affects Me

I-_Whom Do I Affect _Rssume sim?lation

ort simulation
Rule ef object SllderControilll3 on scene NE3YFILE

(_sstqn LooOu_pu_ILOO $_a_eLocX))

One authoring strategy is to use the menu to set an appropriate value for the
attribute and to then continue, testing that the corrected value works. If it
does, the author can edit rules to ensure that the attribute will have an
appropriate value in the future.

122

RAPIDSil Authoring Manual _ August 1990 5. Developing Simulations

Resume/Abort
Simulation

Other Rule
Errors

Another strategy for dealing with Out of Bounds errors is to change the rule
so that it tests for the out-of-bounds condition and has a different effect when
that condition holds true.

To the right of the Needed Attributes window is a menu with two options,
Resume simulation and Abort simulation. If Resume simulation is selected,
the Out of Bounds Attributes windows close and the simulator resumes its
work. It again attempts to execute the rule that made the simulation pause. If
Abort simulation is selected, the windows close but the simulation does not
continue.

Undef'med attributes and out-of-bounds attribute values are not the ortly kinds
of errors that can occur in a simulation's rules. They are the two types of
semantic errors that the simulator knows how to detect.

The most common errors are those that tell the simulation to behave in ways
that are different from the way the actual device behaves. Sometimes these
authoring errors arc difficult to detect. The next section presents the tools that
help authors find and fix such problems.

123

RAPIDS H Authoring Manual _ Auguxt 1990 5. Developing Simulations

Debugging an
Example
Simulation

Simulation Debugging

Complex simulations don't always work exactly as their authors expected
when they are first tested. The Simulation Operations mode of the scene editor
has many features that assist the simulation debugging process.

Consider the simple circuit shown below. A battery is connected to a light by
a switch. The author clicks on Paused to start the simulation.

.... Pmmd !

C34el is, 0

is, 11)4

Y.mmey J'-t _JI

Xo_lttw i,_ 1.rp

Era"......

battery

Uu l.m

Ya_t isl

T

When the author clicks the switch into its closed position, the light fails to
come on! (See the figure below.) The simulation needs to be debugged.

124

RAPIDS 11 Authoring Manual _ August 1990 5. Developing Simulations

Rma_a_ l

]_m_X _t _LIN

_lim _lmm _rp

battery

_llS_m QU LX

(_*_ T_) _,

sm*]p ¢*_

•m

T

The simulation is running, but the light is not in the correct state. There are a
number of strategies that the author can apply to determine how the simulation
should be revised to solve this problem.

First, clicking on the light in the
Display Window puts the light's
object data into the Object lnfo
window.

)biect Info

light

CutgctntS tttta ttom Off

O_jaotLocX ittt 296

01_j_Y btt $2_.

(it ,.. merA (Li ... men (Setsttt,) ate .,,) etse ..,)

125

RAPIDS il Authoring Manual -- August 1990 5. Developing Simulations

Then, clicking on the CurrentState
attribute m the light's object attribute

list brings upthe Attribute Opera-
t/ons men- The author might select
Who Affects Me in order to find out
what attribute, s in the simulation have

control of the state of the lighL

Pluse
act
• On/Off [

• On/Off [
affect_ Me [
m Do I Affect I

Obj_E.ooX bst 2S
otd=n.b=_z b:t

(if ,., men (il ... u_en(_e_tle) _.se...) ase ,,,)

Snap Compile
Save State Restore State
Pause Rules Pause Attrib=tes
Trace Attributes System Trace

A window that shows the Jr-_|itllletl;i;liiisteluf;iJl|li!ill_il{u-5_(;it

attributes that affect the] 6_ I
CurrentState attribute of the cgr:e_xt=Itsae.ctose

right opens on the screen. I v=ts°m'°--_ currentst="° ffl

I V_tsO_tt. _" I

The author can see that the state of the light depends on three other attributes:
the state of the switch, and the VoltsOut attributes of two objects. (To find out
what objects are the owners of these attributes, the author could middle-
mouse crick on any attribute name in the Affects window and the object would
be highlighted in the Display Window.)

126

RAPIDS 11 Authoring Manual -- August 1990 5. Developing Simulations

The nature of the problem is
still not clear, so the author
clicks on the abbreviated rule
in Object Into in order to
bring up the Rule Operations
m_nu.

3bject Into

liBht

Cut_entState atom Off
Obje_'J_X int 2%
ObjeotL_Y h*t 321

Eclit Pause Conaition]
ExDancl [
llnspect]

ff : -........... Pause On/Off

Snap Compile
Save State Restore State
Pause Rules Pause Attributes
Trace Attributes System Trace

Clicking on Expand brings up an executable rule window for the rule, as in
the figure below. The rule specifies that the light should go on if the battery's
VoltsOut attribute is 28 and the ground's VoltsOut attribute is 0 and the
switch's CurrentState attribute is 'closed.

The author decides to check on the status of each of these preconditions for
the light coming on. One way to carry out this check is to select the
corresponding rule segments in the expanded rule window. The rule segment
will be evaluated and the result printed in the message window.

127

RAPIDS11 Authoring Manual _ Auguat 1990 5. Developing Simulations

I

,-_,! '°J

Itu.bl ol' olIIo_ lllkt oil tucon_o MOJO

(If (¢(VOltoOut O0' bOtt_."v On O0000) - t_}
Aim

((VoltsOul: or ground on uOJO) • e))

.....mm_(_ N (_ ((_tl_e of 8vlt_ on 80.10) Selm&8 "close4)

(htSgege '_)

/ (hg_Le 'Off))

(_LS_4gO 'Off))

Sa6p C

Selocting the f'LrStrule s¢gmcnt
((voltsOut of battery on MOdO) = 28)

produces an evaluation result of False. (See the message window above.) The
baRcry's VoltsOut attribute has the value 27, not 28 as the rule requires.

128

RAPIDSfl Authoring Manual o August 1990 5. Developing Simulations

The author now checks on the

battery by clicking on the battery
in the Display Window. The
Object Info windows change to
display an object data view of the
battery. Looking over the object
attribute list, it is clear that the
VoltsOut attribute does indeed
have the value 27.

)biect Into

To find out how the battery got
this value, the author decides to
look at the battery's only rule.
Clicking on the abbreviated rule
brings up the Rule Operations
mentL

battery

C1;fftlll_ trill atom sl
O1_ e(IIZ._X {nt 15,3
Ob_ |Ct_._Y i.llt b011

Volt.u; int 27

Edit Pause Condition I
IExp and I

l Inspect 1
|_'lrJ'_411P au s • On/Off J

Snap Compile
Save State Restore State
Pause Rules Pause Attributes

Trace Attributes System Trace

Choosing Expand from this menu
brings up an expanded rule window
for the battery's rule:

Rule of obiect battery on scene MOJO
I

(Assign YoltsOut 27)

Attribute end
Rule Operations

At this point the author can clearly see that the problem is an erroneous
constant assignment rule for the battery's VoltsOut attribute. The most direct
route to solving the problem now is to edit the rule in the rule editor, changing
the 27 to 28. If the problem were less clear, it might be desirable to use the
Set feature of the Attribute Operations menu to test the simulation's behavior
with the value set to 28. After the correct behavior was observed, the author

would use the rule editor to change the above constant assignment rule.

In the remainder of this section, the major debugging features of the scene
editor are presented. Two of the most important ways of accessing the
debugging features require making use of the Attribute Operations menu and
the Rule Operations menu.

The attribute operations menu (shown at right) is
accessed by clicking the left mouse button on attribute
data. Attribute data can be found in the following
windows:

Edit Pause Condition
llnspect
lOl:ject Bundle
IPauee On/Off
ISet
ITr'ece On/Off
lWho Affects Me
IWl_om Do I Affect

129

RAPIDS II Authoring Manual -- August 1990 5. Developing Simulations

Pauses

Edit Pause
Condition

The object attributes window (in the Object Info windows)
The Affects windows
The Out of Bounds Attributes window
The simulation attributes window

The rule operations menu (shown at right) is accessed Eait pease conaieion
by clicking the left mouse button on rule data. Rule Expano

Inspect
data can be found in the following windows: pause On/Off

The Object Rules window (in the Object Info windows)
The Current Events window

The sections below describe the features offered by these menus.

Authors can instruct the simulator to pause under specified conditions. During
a pause, the CurrentEvents list can be inspected, object attributes and
simulation attributes can be examined, and individual rules can be executed.
Pauses can be associated with attributes or with rules.

Pausing a rule means that whenever the rule is about to be executed, the
simulation pauses. Pausing an attribute means that just after the attribute's
value changes, the simulation is paused. The simulation pauses just as it
would if the author had clicked on the Running button to pause the
simulation. After browsing through the simulation data, the author can resume
the simulation by clicking the same button, which reads Paused.

Authors can edit a Pause Condition for any attribute or rule. A pause
condition determines whether or not the 'paused' rule or attribute wiU actually
make the simulation stop running. If an author does not create a pause
condition for a rule or an attribute, then its pause condition is considered to be
'True.' This means that if pausing is turned on, the simulator will stop
running when that rule is to be executed or when that attribute is about to be
assigned a value.

Whether an author creates a
pause condition for an attribute
or for a rule, after choosing the
Edit Pause Condition command,
a new menu appears at the lower
left corner of the sc_en.

Create pause condition lsy menus
Create pau-_e condition by typing

_oDe

If the option Create pause condition by menus is selected, then a series of
menu choices are presented to help the author build an expression that will
determine whether the attribute or rule will be paused ffpausing is turned on.

130

RAPIDS H Authoring Manual _ August 1990 5. Developing Simulations

Clm_ltm ttl |_

Ot_ am.X.at_ _t 2_

O_am/.a_ mt

_tputVOl_ge los! gll

,_I It tit VOlt NII iJit nl

k f| ,[k_lel |Q_ I] I [OI _-t

Cconditfon) AND <condition:
(<condition) OR <condition)

(NOT <condition)}

Comparlsoo
]Mouse

<lttrlbute-of-thlsiob|ett)
:attribute-of-rill ferent-obJect

ABORT

_ jl It -_ :: ::AI in] la_it;! Zil:f.,, [.ii_ ii] .-|1_ ,

((P6usoConalt, ton))

The menu-based pause-condition editor lets you build a conditional
expression similar to the condition expressions that can be created to fLll the
<condition> part of a rule. This condition expression is understood to refer
implicitly to the object to which the attribute or rule belongs. The figure below
shows the appearance of the SEdit window just after the author has completed
a condition expression for the pause condition for a rule of a push-button
object.

(Current, State SaleAs 'Pressed)

The effect of this condition expression is to pause the rule just before its
execution if the CurrentState attribute of the object is 'Pressed and if pausing
has been turned on. The pause will take place whether pausing was set for the
individual attribute or rule -- using one of the above menus -- or whether it
was set by the one of the two global commands, Pause Rules or Pause
Attributes.

131

RAPIDS!I Authoring Manual _ August 1990 5. Developing Simulations

Pause OnlOff Choosing Pause On/Off has the effect of marking an individual attribute or
rule for pausing. The simulation will actually pause only if the Pause
Condition of the rule or attribute is true. (The default Pause Condition is
True.) When rules or attributes are paused individually, they appear in bold
face in any visible rules lists of abbreviated rules, as in the figure at the left
below.

::loci-<

:urrentEvent_

Simulation Attribl ,te3 ;imulation Attribute_

;bie,-t trffo)biect Info

Inspect

Runuin8 319

Cloe_c int 0

"U'o_ hat].74
Xto_Y int Z0

]ur.ottNS t@t@ atom Lrp

Left .qtatt Button

pt_e4 (_ s_ _4 _) Ptts_m

Ctta_mt5 tat@ atom _r_Im

OMeo_c_n'(hit 20
Objeetl.oeY lnt _L_

Outlmt Volt@ge hat 28
YatlPutVoit@ge hat 28

(if ... their (Schedule ($etState)))
(l_ ,.. me,, (_atiCn Omtmtv_teCe) ese ,,.)
(_kmr_ L_vcajte)

Snap Compile
;Save State Restore State
:Pawe Rules Pause Attributes

:Trace Attributes System Tra_

(if ... then (Schedule (SetSt&te)))
(if ... men (_,stign OuttmtYotttge) lisa ...)

CIo¢k int 0

_[ou#eX int 174

Mo_eeX r int 20

_[o_N.,qt@t@ atom Lrp

Left Start Button

Prtsr46 (32 630 34 27) l_tessi4

Ct_rrentSttt@ ,tom _'re#N,d,
Ot)j eat.t._X bat 20
Objeeff.o_ int _
Outputvotttge hat 28
l'nl_utVoltage int _8

(if ... then (Schedule (SetStatte)))

(if ,,. men (Assign OULtlmtv_ttege) ttse ,,,)

(As*itn Inp, Uv,nt_te)

Snap Compile
Save State ltestere State
Paase Rules Pa_se &ttributes

Trace Attributes System Trace

When the simulation pauses on encountering such a rule, as in the Figure at
the right above, the CurrentEvem$ list will show the paused rule at the top of
the list. Naturally, the rule data will also appear in bold face in this window.

The Inspect option can also be found on both the Attribute Operations menu
and the Rule Operations menu. This option opens an Interlisp-D data structure
inspector for the selected data (the selected attribute or rule). This inspector is
really a Lisp programmer's tool, rather than a simulation developer's tool. We
recommend that you avoid using this feature, as it is both confusing and
dangerous. Documentation on the inspector can be found in the Xerox or
Envos Interlisp-D documentation.

132

RAPIDS11AuthoringManual_ August 1990 5. Developing Simulations

Expand

Object Bundle

Set

Trace On/Off

The Rule Operations menu's Expand feature opens an
expanded structural view of a rule. Selecting rule
elements in this window results in the evaluation of
those elements, and the evaluation results are

presented in the message window.

Ectit Pause Conclition [
Expancl l
Inspect: I
Pause On/Off I

See the section Viewing Simulation Data for more on this feature.

When an attribute data view that is not in a set of Object lnfo windows is
selected, the command Object Bundle will be included in the Attribute
Operations menu. This command wiU open a new set of Object lnfo
windows for the object that owns the selected attribute. Authors can open a
large number of such window sets to view the data of many objects at the
same time.

It is also possible to open an object bundle from the Rule Operations menu,
when you bring up this menu within the CurrentEvents window.

The Set command in the Attribute Operations menu can be used to give a
particular attribute a certain value. This command is useful for quickly testing
the effects of certain values in the simulation.

The Attribute Operations menu's Trace OrdOffcomrnand lets authors toggle
the trace status of attributes. If an attribute is being traced, its visible data
views will be updated as the simulation changes the attribute's values. If you
want to know the current value of an untraced attribute during a simulation,

you must use the fight button command Redisplay in the attribute data
window.

If an attribute is being traced, its data
view in the attribute list of Object
Info windows is overlaid with a light
gray pattern. In the figure at the
right, the CurrentState attribute is
marked as having Tracing turned on.

3biect Info

Left Engine

::

d_ _;i_o_x_;_i............. 24_,.............
Obj carload" iat M9
O_tl_tVotttge iat 0

The Affeots
Commands

The last two commands on the Attribute Operations menu are Who Affects Me
and Whom Do I Affect. These commands open a window that graphs the
flow of effects among attributes.

133

ORIGINAL PAGE IS

OF POOR QUALITY

RAPIDS II Aulhorin& Manual I August 1990 5. Developing Simulations

_L_i_ C t ir7fo

Selector

up (92 _ _ to) up
rJowR (s_ 33_ 1o 1o) Down.

_t_te Ltom Down

0_ lat 7._
obJ_Y mt _3_

I

i _ CufrentSt=te.O if
C_tte_SlJe.D ow_

-"" C_¢ent_t=te.O I!

It is possible to build a perfectly leg.,d simulation that has circulax effects. If an
attribute name appears more than once in an Affects window, it will be boxed.

Multi-Scene Simulations

Many complex simulations require a number of scenes. In RAPIDS II, the
scenes of a simulation axe organized hieraxchicaUy. You should organize the
scenes to minimize the number of required scene changes. It often helps to
include functionally related components on the same scene.

A parent scene in an RAPIDS II simulation is one that has one or more objects
that represent or stand for other scenes. Clicking on such an object during a
simulation will cause the display window to replace the current scene with the
scene that the object represents. We call such objects scene icons. Any
specific object can be mad= a scene icon.

To make an unconnected object into a scene icon, use the object operations
menu to select it and then choose the Open command. You will be asked to
click the left button if you want to type in the name of the scene that the object
should represent. If you click the left button and type in a scene name, then
the selected object will be linked to the named scene. (That scene will then
appear in the display window for scene editing.) If you click the right button,
a new scene will be created and given the name of the specific object.

The simplest structure for a multi-scene simulation is to have one parent scene
with a scene icon for every other scene in the simulation. This is a nearly fiat
scene structure. The parent scene, in a sense,merely replicates the scene map.

134

RAPIDS II Authoring Manual _ Auguat 1990 5. Developing Simulations

_cene
Navigation

In more complex scene hierarchies, some of the scenes that can be accessed
from the highest parent scene have scene icons themselves. Parent scenes are
not constrained to contain only scene icons. They can have ordinary objects as
well.

If an ordinary object is made a scene icon (by Opening it), it does not lose its
a_tive characteristics. Values are still propagated through its attributes and its
rules will be invoked normally. Users are can manipulate controls (switches)
that are turned into screen icons, using normal mouse actions. Double-
clicking on a screen icon only means to go to the scene the icon represents; it
does not also mean that the switch should be manipulated.

In the scene editor you navigate using scene icons and the View menu
command. This contrasts with navigation during student simulation, which
lets students usa the automatic scene map to go to any of the scenes in a
simulation hierarchy in one step.

/S.i$OPVO Shu&-Ofr $ySteO

HVdr_U11C _vq_em, B1_de

_Hyar4_lJc _yeton) 81e_O

_////Pylon Unlocked, FlJQnL Pooltlon) & Chock $1odofol4 ClrcwJ%

_/61000O Folded Clrcut&

TOP SC(N((_:_'_8140O$ $grOed & ContrOl Lockpln| Advenced Circuit

_Slodefo;d Clrcul¢

__poverc_rcu_
$ofoty Volvo Control Clrcut

_Nydroul_c Sy$&eo, Blo4oe I & 2

814d0 Posl_tonln9 Oys&eo
&ccos$ory Orlvo Con&to1Clrcul_

A Scene Map

135

C;/S-:_NAL p,_C;E iS

C:, ;>c_ Ooj_R'Y

RAPIDS II Authoring Manual m August 1990 5. Developing Simulations

Parent Scene

Child Scene Child Scene Child Scene

Display Window Navigation in the Scene Editor

When you am using the scene editor, them is no way to bring up the scene
map. All navigation is carried out using scene icons and the View menu
command. Clicking on a scene icon brings up the scene it represents; clicking
on View brings up the parent of the scene in the display window.

When a scene isbrought up during an editingsession there may be a
significantdelay whilethe editorreadsdatafrom your disk.Ordinarily,the
fn'sttimedelay ismuch greaterthanscene-changingdelaysduringrun-time
simulation. Subsequent access to the scene during an editing session also will
be quicker, in most cases.

136

RAPIDS H Authoring Manual- August 1990 5. Developing Simulations

The Scaled
Scene Window

The Scaled Scene Window, the small window at the upper left comer of the
scene editor, displays a miniature copy of a scene. As far as scene navigation
goes, it is controlled a lot like the display window. If you click on a scene
icon in the parent scene window, the contents of that window will change to
those of the scene represented by the scene icon. By clicking on the menu
button just above the window (labeled View Parent Scene), you can display
the parent scene of the scene currently displayed there.

In addition to controlling the parent scene window this way, authors
automatically change it when they change the scene in the display window.
When the scene displayed there changes, the parent scene window shows the
parent scene of the scene in the display window. (If there is no parent scene
for the scene in the display window -- that is, if the top scene is displayed --
then the parent scene window will display a gray background.)

The parent scene window is sometimes displayed inverted -- black tbr white,
as in a photographic negative. This means that the miniature image of the
scene is not entirely accurate because it hasn't yet been updated to reflect
recent changes you made to the scene. To update the miniature view of the
scene, simply put the mouse pointer in the parent scene window and wait a
moment for it to be redrawn.

_'indow Opa

Bury

Change Scene
Name

Display-Window Operations

The right mouse button brings up a window operations
menu, similar to the one discussed in Chapter 3.

Rury
ChangeSceneName
Edit
Grid
Grid.On/Off
Ha.r(3copy
Redisplay
Shdnl_

This command works just like the Bury command of the generic editor. It
brings up the windows that are hidden below the scene editor windows and
puts them on top, where you can manipulate them. To restore a scene editor
window to the fore, click on any portion of the window.

The Change Scene Name command on the right button menu lets you change
the name of the scene currently displayed in the display window. The

message window prompts you for a new name. Scene names can have spaces
in them. A scene name is not necessarily the same as the name of the disk file
that represents the scene. The name first given to a scene (or something close
to i0 will be used as the file name. Later changes to the scene name will not
make the file name change. It is an error to change the name of any.scene file
(for example, using the Filebrowser utility) if the scene it contains is referred
to by any other scene.

137

RAPIDS !! Authoring Manual -- August 1990 5. Developing Simulations

Edit

It is usually best to change the names of any scenes that are created
automatically when you open specific objects without specifying a name.

Sometimes you want a scene to contain elements that don't really have to be
specific objects -- they are primarily decorative rather than functional from
the point of view of the simulation. Examples include fixed mechanical
elements such as brackets and fasteners, and labels that apply to the scene as a
whole rather than to particular objects on the scene.

The scene editor lets you draw such graphical elements directly on the scene
that needs them. When you choose Edit from the window operations (right
button) menu, a palette of drawing tools appears at the left edge of the display
window. If you have already used the generic editor drawing tools, this tool
menu should look familiar. It is the standard primitive operations menu. You
can use it to draw graphic elements and to add scene-level textual elements.
(See Chapter 3 for a detailed description of the use of this menu.) The menu is
shown in the figure below, overlaying the object operations menu.

)t i_ct Info

GtOUEI

Cu,fentSttte atom
01_ _t.T..oeX int

ObjeetI.ooY int

_biect Oloerations -

Cgeat¢

Delete

V-Flip

Move

Rename

Scale

_ Ililm al)

_ Dox

circle

ourve

line

Copy

Delete

Done

Litre-Width 1

Move

Rotlte

Scale

KuIes
ctne; CtRCUtTI F11e be+n e

138

RAPIDS H Authoring Manual _ August 1990 5. Developing Simulations

Grid

Grid - On/Off

Hardcopy

Redlsplay

Shrink

The Grid command has the same effect as in the generic editor. It allows you
to specify the grid intervals (in pixels) for the purposes of positioning objects.
It is often helpful to use an appropriate grid size in the scene editor when
laying out a scene. An active grid allows you to place objects only at grid
locations, not at one of the pixels in between. For example, many of the
objects in the Bladefold library were drawn using a grid size of 6. You may
f'md it easier to line up specific objects with each other in your scene if you
choose the same grid size when you use this library

As in the generic editor, this feature toggles the visual appearance of a grid in
the display window.

If your computer has been configured with the appropriate printer drivers and
is connected to a printer, the Hardcopy command will print a copy of the
display window on your connected printer.

The Redisplay command repaints the display window. On rare occasions,
graphic operations may leave bits of meamngless garbage on the screen that
can't be selected or otherwise dealt with normally. These graphic artifacts can
be removed by repainting the scene using Rech'splay.

You can suspend a scene editing session by using the Shrink command. The
scene editor windows will shrink to a tiny window that displays only the
currently selected object.

Always do a Write before shrinking your scene editing session and going on
to something else. Otherwise, if something damages your Lisp environment,
anything that you haven't saved may be lost.

139

6

Using Attribute Handles

Connectlng
Attrlbutes
Overvlew

An Attribute Handle is a region that is associated with particular a attribute of
an object. Attributes don't have to have handles, and most don't. There are
two major uses for attribute handles

• connecting attributes while authoring scenes, and
• creating test equipment (such as multimeten, pressure guages, etc.

This chapter describes how attribute handles are used to make connections
and test equipment. If your simulations don't require test equipment, and you
don't plan on connecting attributes using the mouse, you don't have to read
this chapter. The first part of the chapter describes how attributes can be
connected using attribute handles. The second part of the chapter describes
test equipment authoring.

In RAPIDS II, authors must explicitly connect objects to each other wherever
they want values to be passed. Any values that are associated with objects are
found in the attributes of the object. 'Making a connection' between two
objects means ensuring that a value will flow from one object to another. If an
author wants the value of a power supply's OutputVolta&e attribute to flow to
the InputVoltage atuibute of a power switch, then he or she must ensure that
the switch's InputVoltage is assigned the OutputVoltage of the power supply.

There are three different ways to connect attributes in RAPIDS II.
• Write a rule that assigns the value of one attribute to another
• Use the middle mouse button to link the atuibute handles of objects
• Use the Make Connection option of the rule editor

No matter which of these connection methods is used by the author, the

underlying effect is the same. A new ruie is created that has the form
(Assign InputVoltage of PowerSwitch OutputVoltage of PowerSupply).

Every connection is underlyingly represented as an assignment tale.

140

RAPIDS II Authoring Manual _ August 1990 6. Using Attribute Handles

In this chapter, the latter two methods for making connections axe outlined
and demonstrated in the context of an elementary simulation, which is
described below. The two shortcut approaches to making connections are:

(1) linking attributes using the middle button of the mouse, and
(2) using Make Connection in the rule editor.

Chapter 4, on rule editing, describes the creation of assignment rules using
the ordinary features of the rule editor.

Here we describe only the simple case of direct connections between the
attributes of two objects. Keep in mind that it is sometimes necessary to link
attributes in more complicated ways. For example, conditional assignments of
values are sometimes required. (That is, an assignment is to take place only if
some condition holds true.) These types of connections must always be
authored by writing a rule that prescribes the flow of effects.

An Example Simulation: A Simple Electrical Relay

Imagine that you want to create a course to teach elementary electrical
component functionality. In such a course, you might have a scene that
demonstrates the behavior of an electrical relay.

/t Simple Circuit with a Relay

aaaltery

This simple simulation can be used to demonstrate how a relay behaves in a
circuit. When the switch is closed, the power provided by Battery A energizes
the coil in the Relay. This closes the relay's internal contacts, so that the
power provided by Battery B will mm on the light. If the switch is opened
again, the coil will be de-energized, the contact will open again, and the light
will go out.

141

RAPIDS IIA_ahoring Manual _ Aught 1990 6. Using Attr_bo,_Handle_

0 0

There area number of d.Lfferent ways that this simuJation could be written. In
the example presented here, an intermediate level of behavior modeling is
used. If we had taken a completely high-level 'su.,'face' approach to modeling
the citcmt's behavior, we would not need to connect object attributes at all. If
we had taken an approach that represented electrical phenomena in a more
detailed, 'deeper' way, the examples would be significantly more complex.

The firststepinbuildingthecourseon thebehavioroftherelaywas tocreate
thegenericobjectsthatserveasthe templatesforthe specificobjectsinthe

simulationscene shown above.In thecourseof buildingtheseobjects,wc
sometimesusedtheordinaryrule-buildingapproachtoconnectingattributesin
a singleobject.For example, the switchneeds a rulethatdescribeswhen

voltagesshouldbe passedfrom itsinputtoitsoutputattribute(callcdVoltsln
and VoltsOut,respectively.Inthefigurebelow,such a ruleisintheprocess
ofbeingbuilt.

Select an
Select an
Select an
Select an

expression to replace <Effect1).
expression to replace (Attribute).
expression to replace (numeric).
expression to rep|ace <Effect2).

)._1

ir

Add New Object

Copy

gg

(if (CurrentState is 'Closed)

then (Assign VoltsOut Voltsln)

e_e <Effect2))

The sequer_ of directions to the author ('Select and expression to replace...')
shown m the message window at the top indicates that this rule is being built
using the menu-based rule creation option.

When the rule has been completed, it appears as shown in the figure below.

142

RAPIDS II Authoring Manual _ August 1990 6. Using Attribute Handles

3biect

Display Window0 0

k_gB_4

Object Operations

Add New Object

Copy

(if (Current3ta_e is 'Closed)

then (Assign VoltsOut Voltsln)

elso (Assign Volt$Out 0))

This rule could be viewed as an instance of a conditional connection, in the
sense that it connects the value of the Voltsln attribute to the VoltsOut attribute

of the switch. Such attribute-connecting rules can be created either in the
generic editor (for connecting two attributes of one generic object) or in the
specific editor (in order to connect the attributes of different objects).

The two shortcut methods that are the subject of this chapter (mouse-based
connections and Make connection connections) are available only in the scene
editor. They can therefore only be used to connect the attributes of specific
objects. When two generic attributes (of a single generic object) are to be
connected, the author must create an assignment rule using the rule editor in
the generic editor. (It is, however, possible to connect two attributes of a
single specific object using either the mouse-based or the Make connection
methods.)

Connecting with the Mouse

The easiest way to connect two attributes (of two different objects in a
simulation) is to use the middle mouse button. The simulation author clicks
first on the attribute that is to receive a value, and then on the attribute that is
to provide the value. A new assignment rule is automatically created for the
fwst attribute, with the form

(Assign AttributeWhatever of FirstObject SomeAttributeof SecondObject)
This process is shown in detail later in this secdon.

143

RAPIDS H Authoring Manual _ August l_O 6. Using Attribua_Han41_

Attribute
Handles

Inordertoconnectattributesusingthemouse, them has tobe somethingto
clickthe mouse on thatrepresentsthe attributes.This isthe functionof
attribute handles. An attribute handle is a rectangular area that represents the
locationof some attributeof an object.Most attributesdon'thave attribute

handles.There isno particularpartof an objectthatshouldbe associatedwith
itsCurrentState,forexample. For some otherattributes,however, especially

thosethatateassociatedwithvaluesthatareinputtooroutputfrom an object,
it makes sense to associate a particular part of the appearance of the object
with that attribute. An author sets up such an association by creating an
attribute handle for the attribute. All attribute handles must be created in the

generic editor.

(>bjcct_p_

_i::!_iii!!iiiiiiiiiii!iii!iiiiiii_ii!_iii_iiiiii!iiiiiiiiiii!:!iii!ii_iiiiiiiiii_ii!!!i_!iiii_i!iiiiiiii!_iiiiii!_i!iii_i:_::!iii:iil
!i!iii!!iii_!iiiiiii_ii!iiiiii!iiiiiiii_i!ii_iiiii!!iiiii_!iiii_i!ii_iii!!iiiiiiiiiiii!ii!i_iiii!i!i!i_i!!i!!i!i!_iiiiiiii!!iiii!_iiii!_

(,.,,_.. o_,.,) ii_iiii_!i_!i!i_._iii_/_ii_i!_!!_i_i_!_!!i_ii!i_/_!_ii!ii_ii_i!i_i!_iiii_iiii_iiiii_i!_iii_iiii_ii_i!i!ii_!i_iiii_iii_i_

c,.,.:,_ __iii_!__i___i!i!__!i____!iii__i!i!iiiiiii___iii!i_i!_i__!_!iii____!_i!!__!!i_i_iii!_i!ii___iii!i__!!_iii_!_ii_ii_iiiiiii__!__!_ii_ii!_i_!_

°'e--Dei N,

@t_'ic(t (..m_tqc_t

Ot_Ject

Ren

Rol

R_

Oe_ie

Oarm

Lk_.Widm _

Mine

Iqa_de

8a_e

_iiiiiii!iiiii_iii_iiiii_iiiiii__iii_ii__ii!i__iiiiiiiiii_ii_i_iiiiiiiii_iiiiiiiiiiii_iiiiii!!__i__iii_iii____i__iiii!_ii_ii!_iii__i_iii__i
_ii__iii_i_iiii__i__iii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiii_ii_iii!i!i_iiii!!iiiiiiii!i__!ii_i_iii_i!_!!!!!i_i_ii_iiii!!ii____!_ii_!!_ii_____
:!iiiiiiii!_i_i_i!iii!_ii!iii!!i!!ii_i_iii!!!!i!_iiiiiiiiii!!iii_i!iiiiii!iiii!ii!ii:::!_:ii!ii!!!:i!!iii_i!_i_!!_i_ii:i_i!:_:_!i_i:! _

i!i!!iiii12i!i!i!ii!2i_!!!i:!i!ii!ii[!i_i2i!i!!i_i!iiiii2iiiiii!!!i!!i_iii_i2ii!!iiii_iiiii!i!!i_!:iii!!iii[i_i!i!i2ii_iiiiii_i_!!iii

!iiii![2i!i_iiii_i2!!iiii2!ii?i!_!i!iii_iii!iii2_!!i_i!iiiii!!_ii_iiii_ii!!!_ii2i_2!!!_iiiii!ii_i!2iii2!2i22i2i[!_i2iii_i?:i:i2iii!!i_!i_!

!}iiiiiii}i}}}iii_i!iii_!iiiiiiiiiiiiiii!iiiiiiiiiiiiiiiii!iiiiii_iiiiii_iiiii!i_i_i}iiiiii}i!iiiiiii__!ii!__iii__ii!___iiiiiiiii_iiii_i___

In the figure above, the author is completing the appearance of the Battery
generic object in the generic editor. The two terminals at the top of the battery
ate good contenders for the locations of attribute handles for attributes that
will be used to distribute power from the simulated battery.

]44

RAPIDS II Authoring Manual m August 1990 6. Using Attribute Handles

Creating
Attribute
Handles

After the drawing is f'mished, the author in this example chooses Object
Attributes from the object operations menu (to the left of the display window)
and adds a couple of atmbutes, which he chooses to call PosVohs and
NegVohs. FoLlowing the procedures described in Chapter 3, he names the
attributes and assigns them the type integer. When att_butes are f'u'st created,
their entries in the Handle Region column of the Attribute Operations window
(see the figure below) appear as undefined.

)biect Attributes

Attribute Name Type

CurrentState Atom

ObleetLo_.X Integer

Ob_ectLocY Integer

PosVolts Integer

Handle Reqion

In order to create an attribute handle for an attribute, the author clicks on the
word 'undefined,' and a menu pops up with a choice of ways to create a
handle for the attribute.

ObsectL oO(Integer

ObsectLo<Y Integer
PosVolts Integer _

Nc,_/olts Integer (80 490 10 10)

Sweeo region
Enter hanclle size

Use i_rectefinecl handle
Use region of obiect

In the case of these attributes, the author wants to create handles about the size
of the terminals at the top of the battery, so he chooses the Use predefined
handle option, which creates a handle that is 10 by l0 pixels. The mouse
pointer turns into a black rectangle, and the author positions it on top of the
appropriate part of the appearance of the object. In this example, one attribute
handle is associated with the PosVohs attribute by being placed on the
terminal labeled with a + in the battery's appearance. Another attribute handle
is created for the NegVohs attribute and is placed on the terminal graphic just
above the -.

Creating such attribute handles in the generic editor is all that an author has to
do in order to be able to select an attribute with the right mouse button when

working in the scene editor.

145

OR!G)NAL PAGE IS

OF POOR QUALIFY

RAPIDS II Authoring Manual _ August 1990 6. Using Attribute Handles

State Handles
and Attribute
Handles

It is important to keep in mind the distinction between attribute handles and
the state handles that are associated with switches and other controls. Authors

create attribute handies from the Attribute Operations window, as shown in
the figure above. State handles -- the regions of a control object that cause the
objecttochange betweenstates-- arecreatedintheStateOperationsmode of
thegenericeditor,as shown inthefigurebelow.

_tate _ D _r_i_'ir_n _

Add New State

Continuous State

Copy

Cycle

Delete

Delete Handle

Control-type objects can have both types of handles -- state handles and
attribute handles. The switch used in this simple example has both types of
handles. In the figure below, the Attribute Operations window is open for the
same switch. Her= the author has created attributes called Voltsln and
VoltsOut and has associatedattributehandleswith each.The handles are

locatedatthetwo circlesateitherend oftheswitch.See thefigurebelow.

146

RAPIDS I! Authoring Manual _ August 1990 6. Using Attribute Handles

O b" e ctlectO_p e ratio n s

Add New Object

Copy

Cycle

Delete

O O

Add Delete

)biect Attributes

Attribute Name Type

Current3tete Atom

Ob_ ct LocX Int e gq r

ObtectL ocY Integer
Voltaln Integer

VoitsOut Integer

Oone

Handle Region

(65 380 10 10)

(1101801010)

In a similar fashion, the author then creates a Light object for the simulation,
adds new attributes (here called Vohsln and GroundSide, and makes attribute
handles for the new attributes.

Add Delete Done

Attrilb_e Name Type HImdle Reqion

Ob/ectL ocX Integer

OblectLocY Integer
voe._ _¢eger (6s 305 fo fo)
GroundSide Integer (110305 1010)

The next step in creating the example simulation to teach about relays is to
create the Relay generic object. It should have the two states shown here:

147

ORIGINA!. PAGE IS

OF POOR QUALITY

RAPIDS II Authoring Manual _ August 1990 6. Using Attribute Handles

The Relay has four electrical ports: two for the coil and two for the voltage
path that is controlled by the relay.

_nl_Ci" Attribute_

Attribute Name Type

Curre nt3ta te Atorn

Ob_ectt.ocX Integer

ObtectLocY tnte_et
Ca;IVoltdn Integer

CoUVoltsOut integer

SJgnaiVoltsln integer

SignalVoltsOut integer

oo.
Handle Region

(65 2601010)

(11o2so lO lo)
(ss 220 lO lo)
(115 220 10 10)

Defining Generio
Behavior

Using the Attribute Operations window of the generic editor, the author
creates these new attributes and assigns them attribute handles, as shown in
the above figure.

At this point, all the necessary attribute hand/es have been created. The author
can build whatever ru/es are required at the generic level. It usually makes
sense to write generic rules that govern the intemally<letermined aspects of an
object's behavior. One example is the rule for the switch presented near the
beginning of this chapter, which says that values are passed from one voltage
atlzib_ to another ff the switch is closed.

Since the behavior of the light can be said to depend on the values of its
vokage attributes, it also makes sense to create a generic object rule that sets
the state of the light. The oversimplified rule shown below works for this
simulation, but an author could write a more sophisticated rule that would
give the object wider applicability.

148

RAPIDS ii Authoring Manual _ August 1990 6. Using Attribute Handles

<_l)]cet (]p_

Add New Object

Copy

Cycle

Delete

Object Attribute=

Object Graphic=

OloJect Hendlen

Move

Rename

Rotate

meDu$

New rule by typing

Copy rule
Edit rule

Delete rule
=i!i_!i!:'!_!i!=?_!!;_!_!i!_!!i!i_ii!_i_!!i_i_i_i_!_!_i_!_!_!!!i_ii t! i i iiili i ii i

The behavior of the generic Relay can also be defined in the generic editor.
Two rules axe called for. The first says that signal voltage should be
propagated when the relay is in its energized (closed) state. The second says
that the state of the relay should be closed when power is supplied to the coil
and that the relay should otherwise be open. See the figure below.

149

ORIGINAL PAGE IS

_i-" POOR QUALITY

RAPIDS II Authoring Manual m August 1990 6. Using Attribute Handles

object Graphics

Object HnDdlu

Mow

Rename

Rotate

i
New rule by menus
New rule by typin[

Copy rule
]Edit rule

Delete rule

Done

_i!ii!i

Building a Scene At this point, the generic library required for the simulation is complete. The
author must Save the library before openning the scene edkor. The author
activates the scene editor and creates the scene shown on the on the second

page of this chapter. If you have the files used in this example, and are
following along on your machine, use the name RelayScene for the scene file
and RELAYOBJS for the library fide.

',;,_'"_o_'i;:......i_'_'_;,'o',:_i............'.......................ii.!._._.:.!_._.i.!.i._._.!i!_i._i_iii_i_ii!iiii_ii_i!iW_!_W_W_i!_i!_!_!_i_i_iTiT_Ti_iT_.iTiT_T::
Re ad Ing gener' Ic de f In 1I;Ion f 1 le : {DSK }<L l I!!_i_i!ii::i::i_ii!!_i!_!_Ii!i_i_i_!!_i_ii_iiiiiiii!!_!_i_!i!_!!_!_ii!iiiiiiii!ii_i_!i!_!!_i_!_ii_i
SPF I LE$) RAP I OS I I >RELAY 0808.8REAL; 1 li!__!!_:i:i.i:i,,!ii!_!iii!_iiiiiiii!ii!!_!iii:_!_ii!i_iiiii__i_i!_!!_!'i:_:i:!:!:_:!:!:i:i',i:i:i:i:i:_:_:i'.i:i..i:
Oone I: [[[i_[i :i:::::::::::::::::::::::::[::_'_!:::::::[::[!iii!_!![:ii[iiiiiiiiii!_[!ii !ii!i!iii

• .__.. Iil!ii!iiiiii!ii!!!!iii!iiiiiiii!iiiiii!ii!i!i!ii iiiiiii!ii!!i!iiiiiiiiiiill
......... == ' ',',',' ' ',', ," ', ,','," l ,l;',',',',',';'"'"'""",'_'""'"'""'"'"'"';';

Simulation Isc_'_F_: RelayScene
I_k"-: RELAYOB,.IS A

G.neric Editod _o_¢$ub._ene,?: NI L

/[_
S I _

! "n''"°' I I"..
..,d Simulation I Run InIt_Jction __i_ii_i::_::ii_i_i_iii_iii_i_iiii::i_ii_iii_::_::_ii::iiiiiiiiiii::i!i::i::_::_::_::_i_i_iiiiiii::::::::ii_::iiii::::::_::i::___::_ii::::iii::::iiii::__i_i_i

• • ::!iii:!i_i_!:_::::::::::::
'IRun Simulation I |::::::::::'::::_:::'::............._':.......:::::::::::::::::::::::::::::::::::

The appearance of the scene during its construction in the scene editor is
.shown m the figure below. The Create menu command is used to create new
instances of the generic types previously defined and to place them on the
scene. The lines ('wires') in the scene were simply drawn in using the
background drawing tools of the scene editor. (The author chooses Edit from
the right button menu in the display window. A drawing menu appears at the
left of the Display Window. When the line drawing is complete, the author
selects Done, and the drawing menu disappears. See Chapters 3 and 5 for
additional information on using the drawing tools.)

150

RAPIDS H Authoring Manual _ August 1990 6. Using Attribute Handles

the ilsht

iii .Tc.a_ i m .,an. t ..., =L

Create

Delete

V-Flip

Move

Rename

Scale

Copy

Cycle

Label

Open

Rotate

Rules

Balm_y A

MOUSe

Connections

Simply placing the objects on the scene and drawing some lines to make them
took attached to each other has not resulted in their becoming functionally
connected. At this point the author is ready to begin making connections
between objects in the scene. Connections are made in the Object Operations
mode of the scene editor.

Making connections with the mouse is a two-step process. The author first
designates the attribute that will be the receiver (the one that will be assigned a
value in the rule that is created) and then designates the attribute that will be
the sourceofthe assignedvalue.

An author might choose to start by connecting the input voltage attaSbute of the
switch in the above scene (an attribute called Voltsln) to the voltage attribute
associated with the positive terminal of the battery. The first step is to
designate the receiving attribute, by clicking with the middle button of the
mouse in the circle at the left of the switch. Because that area was previously
marked as an attribute handle for the Voltsln attribute, the scene editor

recognizes that an attribute has been chosen as the target of a new assignment.
It gives feedback to that effect by presenting the message "Pending Receiver
has been filled with the selected attribute" in the message window.

151

ORIGINAL PAGE IS
OF POOR OUAU'r7

RAPIDS lI Authoring Manual _ August 1990 6. Using Attribute Handles

_ h-_-s b_ -t_tlie_ " v_l_h selected attribute.

_attery A

A Simple Circuit with a Relay

3attery B

Just to the left of the menu bar, above the top left comer of the Display
Window is a small window labeled Pending Receiver. This window is
ordinarily empty. After the author clicks on the Voltsln attribute handle,
however, the name of the attribute, 'Voltsln' appears in this window. The
current value of the attribute is also displayed. Because the simulation has
never been run at this point, the value of Voltsln is unknown.

When a Pending Receiver has been designated, the next click of the middle
button on an attribute handle is interpreted by the scene editor as the source of
the attribute value that should be assigned to the atu'ibute named in the
Pendin 8 Receiver window.

Reading about the mouse-based connection process is much more laborious
than simply doing it. The author clicks the middle mouse button once on the
handle of the receiving attribute and then on the handle of the sending
attribute. Presto! The connection has been made.

152

RAPIDS !I Authoring Manual _ August 1990 6. Using Attribute Handles

)biect qfo

Once a connection has been made, a
new rule is immediately created that
constitutes the functional

implementation of the connection. If
the author now selects the switch, its
object information window (as at the
right) will show that there is a rule
that assigns a value to Voltsln. (The
rule is shown in an abbreviated form

Assign Voltsln. The *nc next to
the rule simply indicates that the rule
has not yet been compiled for
execution efficiency.)

the switch

Cto_ (280 _ I0 I0) Ctose_

Ope,, (242 48_ 62 31) Op_nt

Currents tare Wot_ O_en

Obje_ocX Int 2_k_

O_je_tY.ooY lnt 465
Volt-rn lnt unknown H

VoltmOut lnt _nknown H

(AS'EiCn Vc_tsln) *no

An author can make most of the required connection in a small scene such as
the relay simulation in two or three minutes. In the figure below, the rules of
the relay object are examined in the Rules Window immediately after its
SignalVoltsln and CoilVoltsln attributes have been connected using the
mouse-based connection method. The lowest rules shown in this list are the
rules of the generic Relay, while the higher rules -- in this case the two rules
that begin with the word Assign m are rules of the specific relay object on
this particular scene.

I-'I_11

:(Ak._._Jg_.'.-_1_1_._1:¢._Zn. :(Vo_Val:t_' at" ._'t .t_'r:y:.:far:. :1:1_'._L._. " ._la._):): : :::::::::::::::::::::::::::::::::

:(:i:f:::(_i :1V0!:t_!n:: .):::!:):: :_: :('Se.tS .ta,!m:. _Er_rgi z edTC! o_d). :a! _ :.(S_tSt_.te :.. ooermrg! zeo_-o9

iiii!ii!)iiiiiii)i)iiiiii);i;iiiiiiii!iiiiiiiiiiiiiiiiiiii;i;ii!iiiiiiiiiiiiiiiiiiiiiiiiii!i)iiii);i
Making connections with the mouse is the easiest way to provide for the
correct assignment of attribute values between objects in a simulation. It can
only be used, however, ff attribute handles were def'med for the generic
objects. The next section describes another way to make connections.

153

RAPIDS 1I Authoring Manual _ August 1990 6. Using Attribute Handles

Using Make Connection

The second easy way to make connections is to use the Make Connection
option in the RAPIDS II rule editor. This feature does not require attribute
handles, so it can be used to connect any attributes of specific objects.

CmrMmmtS tatG Wo_ Oft

Ol_mLo,,X r,.t 170

VOIteZA ,Tall _m JrAowm

Cr rouscLq lee ,_t! _mowl

(a,l...m_ (SlOule) _le ,.,)Omm

........... 11[....

Ctcotc Copy

Delete Cycle

V-F_a Lmbelke connection

New rule by menus
New rule by typing

Copy rule
Edit rule

Delete rule

Done

i__:__ii_:
:_ _Li_ttT_

I|llll I

ii i i iii i !!!iiiiiiiiiii:!iiiiiiii!iii!i!iiiiiiiiii!iii i ii! i iiii!iiiiiiii iii iii iiiiii!ii iiiiiiiiiii iiiii iiiiiiiiii!iiiiiii i i i i i i i!iii i i i i!i

The figure above shows the rule editor being invoked on the specific light in
the relay simulation. One rule already exists for the light, a rule inherited from
the generic Light object. Here the light's Voltsln attribute must be connected
to the SignalVoltsOut attribute of the coil above. The author chooses Make
connection from the top-level rule menu at the left. The message window
(near the top of the screen)prompts the author to select an attribute of the light
that is to receive a valuz. (See the messag¢ window appearance below.)

tm ill

_lect the attribute that 18 to receive a value.

154

RAPIDS H Authoring Manual _ August 1990 6. Using Attribute Handles

ObjectLocX
ObjectLocY

Vcltsln
GroundSide

<new-attribute>

ABORT

At the same ume, the top-level rule
menu is replaced with a new menu
titled 'Receiving attribute.' This
menu lists those attributes that have

already been defined and gives the
author the option of defining a new
attribute at this time.

The author wants to create a rule that assigns a value to Voltsln (that is, one
that connects the light's input voltage to a source). The message window
shows that the Voltsln attt ibL_tehas been designated as the receiver and asks
the author to pick what atuibute is the source of the value.

the attribute that is to receive a value.

that is to send a va]ue.

The easiest way to designate the source (that is, the sending attribute) is to
choose it from a list of the attributes of another object. The author holds down
the shift key and clicks on the object that has the source attribute. In this case,
the relay should be Shift-clicked.

A _tmpl¢ Circuit with a Relay

A pop-up menu of the selected object's attributes appears, as in the fi .gure
above. Here all the defined attributes of the relay (that axe of the appropriate
type -- integer or real, in this case) appear in the menu, along with an option
to def'me a new attribute. The type and value of each attribute is also displayed
in the menu. (If attribute names were not weU-ehosen, it is sometimes very
useful to be able to see their current values.)

Since the light should get its value from the relay's SignalVoltsOut attribute,
that is the attribute that the author chooses from the pop-up menu. At this

155

RAPIDS i[Authoring Manual _ August 1990 6. Using Attribute Handles

point, the connection has been established, and a new assignment rule appears
m the list of rules. See the figure below.

the llsht

Cw,mmlS_l Wtml

ONwtL_X _t

Wo4vJ.n Tit _ X

O_:luua_ _le ,Tat m K

OJ .. meat (:1_) _ ..) elba

(_.:Sgl VqlIISIJL)

Create Copy

Delete Cycle

V-F_e Label
ke conilectJoo

New rule by menus
Hew rule by typing

Copy rule
Edit rule

DeJete rule

Done

7utgrd__

Testing the
Simulation

The author can then make another connection using this method, or use one of
the conventional (menu-based or structure-editor) approaches to building
another rule. As with any other rule, a rule created using Make connection can
be deleted or edited.

After a few minutes of making connections on this scene (using either the
mouse connection option or the Make connection feature of the rules editor),
the author can begin testing the f'mished simulation.

The two figures below show two states of the finished simulation. In the first
one, the switch is open, so the relay coil is unenergized, the relay contact is
open, and there is no power to the light. In the second figure, the switch has
been closed, so the relay coil is energized, its contact is closed, power is
available to the light, and it is shining.

156

RAPIDS 11 Authoring Manual--August 1990 6. Using Attribute Handles

A Simple Circuit with a Relay

_Battery _B

Relay

Figure A. Switch Open, Relay Coil Unenergized

When to Use
Make Connection

A Simple Circuit with a Relay

O_witc_ 0

Relay

:Battery B

Figure B. Switch Closed, Relay Coil Energized

This simulation scene is now ready for use as part of a course on the purpose
and functioning of simple electrical relays.
Both mouse-based connection and the Make Connection option from the Rule
Editor are easy to use. If attribute handles have not been def'med for a generic
object, it is not possible to use mouse-based connection. In such cases, the
Make connection option is the only one available other than simply building
the rule (either by menus or with the structure editor).

157

RAPIDS 11 Authoring Manual _ August 1990 6. Using Attribute Handles

Sometimes you will not be able to use mouse-based connection even when

attribute handles have been def'med. In particular, when two different specl.f'IC

objects with handles have overlapping regions it may not be possible to
choose attribute handles from both. This is the case in the simulation of neural

connections on the retina, shown below.

I LIB I Ll[ii]ILUL m[;i LSIP -I.

View Simulation Write ExitObject Ops.

Here the retinal ganglion cell objects partially overlap the receptor cell objects
from which they receive input. This makes it impossible to connect a ganglion
cell's input attribute to the corresponding output attribute of the receptor cell.
Fortunately, it was easy to use Make connection to establish the proper
assignments. (In the figure above, the author is about to assign the MidOutput
of a receptor to the Midl_ut of the retinal ganglion cell immediately below it.)

When mouse-based connection fails to work because the objects are so close
together that their regions overlap, simply select the object that owns the
receiving attribute, choose Rules from the object operations menu, and then
use Make connection to establish the assignment rule that links the attributes
appropriately.

158

RAPIDS H Authoring Manual _ August 1990 6. Using Attribute Handles

A Note on

Productivity
This description of attribute connection uses quite a few pages to describe two
techniques that are really very simple to use. The relay simulation took less
than one and a half hours to complete, including building the generic library
from scratch, together with testing and debugging the simulation. Part of this
productivity was du_ to the ease with which connections could be made.

Attributes for

Test Equipment

Creating Test Equipment

Attribute handles also play an important role in creating pieces of test
equipment. To make an item of test equipment, such as the voltmeter shown
below, simply requires taking certain attribute actions in the generic editor and
then building a special type of rule in the scene editor.

Voltmeter

/
In the generic editor, an attribute called VoltsAtProbe was created and
assigned an attribute handle. See the figure below. This attribute will
represent the test probe for the simulated voltmeter. Its handle is located at the
stylus in the voltmeter's graphics.

)tli_<t Attrtt3r _t_,

Attribute Name Type

5teteRo_et_n Re#t

Current.R_te Atom

Ob_ctLocX Integer

Ob;ectLocY Integer
VoltsAtProbe Real

DisconnectValue Real

Done

Handle Reg|on

(72 55 3t 25)
undefined

Voltmoter

/

159

ORIGINAL PAGE I$

OF POOR QUALITY

RAPIDS II Authoring Manual _ August 1990 6. Using Attribute Handles

Generic Behavior

The attribute that will be associated with a test equipment probe can be given
any name. The attribute name DisconnectValue, however, is a special name
that serves a special function in sinmlated test equipn-ent. Whenever a piece of
test equipment is disconnected, the value in its DisconnectValue attribute is
placed in its test probe attribute or attributes.

In the case of the voltmeter, if the author wants a value of 0 to register when
the meter is disconnected, then the generic object should be given a constant
assignment rule that gives DisconnectValue that value:

(Assign DisconnectValue 0,0)

The visual behavior of the genetic object must also be authored in the generic
editor. The voltmeter's needle should rotate to a position that is determined by
the value at the VoltsAtProbe attribute. The following rule achieves this effect:

(if (VoltsAtProbe <= 0.0)

then (RotateTo 0.8)

else (if (VoltsAtProbe < 50._)

then (RotateTo (VoltsAtProbe

else (RotateTo 1.e)))

/

This rule says that if VoltsAtProbe is greater than O, then the needle should
rotate to a proportion of its extent determined by the value of VohsAtProbe.
This rule creates a voltmeter that measures voltages between 0 and 50.

Defining Specific
Test Equipments

..............): tam (Ro_

iiiiiiiiii!iiii!i!i!!!i!iiii!iiiiiiiii!i!iiiiiii iii i!iiiiiiiiii!i!!!!i!!i!!ii!iliiiii!iiiiiii!iiii!iliiiiiii!ii!i:iiiiiii!i!ii !il
When these two rules have been created, a simple voltmeter has been defmed.
(See the above picture.) Nana_y, it is possible to build more complex items
of test equipment, as well. For complex test equipment, it is usually best to
create the controls and indicators as separate generic objects. The indicators
should have the test probe attributes and the special DisconnectValue attribute.

To make a specific test equipment indicator, you nmst create a special rule that
assigns the reserved attribute indicator PROBE to your test probe attribute.
The rule editor supports the authoring of such rules by menu in the scene
editor environment.

16o

RAPIDS II Authoring Manual _ August 1990 d. Using Attr_ate Handles

In the case of the simple voltmeter, the specific voltmeter object needs a rule
that assigns PROBE to its VoltsAtProbe attribute:

(Assign Vo]tsAtProbe PROBE)

In the figuze below, such a voltmeter is shown in the simulation operations
mode of the scene editor. It has been connected to the output voltage of the
relay.

:N

RunniaI 0:0:44
ox

............... o._mr,.,

[C'_t .T_t o

]K_m4_x ,_lt

_o_e_" Y't 4

Voltmete¢0469

s ,,. _em (I_I_ITO) tJ41 ..,) ome

($._lm¢__NmmeetVeme) ol5
(aJl_Ca vIs.Meeme) e'mt_

Sa6p CempiXe

SaVe State lt_t#l,o ItaM

Paise lal_ Pause At__t'-_*__ _

A Simple Circuit with a Relay
vo_tme)l,

-,

\!/

IH

The needle has deflected about 10% from its 0 value in this figure. It is
measuring five volts, so its needle has rotate 10% of the extent between its O-
and SO-volt values.

How Test

Equipment Is
Used

Clicking on a test probe with the middle button during a simulation makes that
probe the currently pending probe. The little window labeled Pending
Receiver (at the top left of the Display Window) will then show the name of
the test probe attribute. (Its value is also shown here. When the test probe is
first designated, its value will be unknown.) The test probe will remain the
pending receiver until a different test probe is selected.

To hook the chosen test probe up to a test point on the target equipment, the
user must click the middle button of the mouse on some test point. A test

161

ORIG:;_AL P_,GE IS

OF pc_1_ _J#,LFFY

RAPIDS 11 Authoring Manual--August 1990 6. Using Attribute Handles

point is interpreted here as any attribute handle in the simulation. When this
attribute handle is middle-buttoned, the test probe attribute is temporarily
connected to it, until the probe is connected elsewhere or is disconnected.

An active test probe can be disconnected using the right button menu of the
Pending Receiver window. After such a disconnect takes place, the value at
the test point will be the value of its DisconnectValue attribute. See the
updated (disconnected) attribute value in the figure below.

So long as a test point is connected to another object's test point (attribute
handle), the behavior of the test equipment will reflect changes in the test
point's attribute value. This approach to test equipment permits very flexible
and realistic simulation behavior in RAPIDS II.

162

7

Authoring Instructional Content

Building a
Simulation

The content unit editor is used to create and edit a course's content units. A

content unit is a fragment of a lesson that is based on a RAPIDS II simulation.
Complete courses are constructed using the instructional plan editor, which is
described in the next chapter. Each content unit (lesson fragment) includes
one or more content items, which are also created in the content unit editor.
Every content item has a student action. The expositions associated with
content units and content items are composed in the content unit editor. In
sequence, this chapter describes the editing of content units, content items,
student actions, and expositions. The examples in this chapter are based on a
course about the jet aircraft engine starter system described in Chapter 2. You
can examine this course using the RAPIDS II authoring tools that you loaded
earlier.

The content editor can only be used to build course materials for the most
recently built simulation in the environment. Here we use the term built
simulation in a special way to mean a special simulation that has been built by
choosing the Build Simulation menu item in the RAPIDS H Tools menu.
When you click on this option, the dialog box shown below appears.

Map File: NEVSTARTER

c3ener: F.'e: EN6INESTARTER A

Simulation Instruction

Generic Editor

Scene Editor

Build Simulation

Run Simulation

Content Editor

Plan Editor

Run Instruction

The Map File referred to in this dialog is the highest-level scene in the
simulation. (If the simulation has only one scene, that is the name to insert.)

163

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

The Generic File is, of course, the library of generic objects used to build the
simulation.

After the OK button is clicked, several minutes will be required to build a run-
time, compiled version of the simulation. As they are processed, names of the
specific objects in the simulation will appear in the window at the top of the
RAPIDS H Tools menu. When the simulation build process is complete a
message to that effect will appear above the menu:

Rtght Start Button
Left Start Button
The simu]ator is now built.

Starting the
Content Unit
Editor

Simulation Instruction

Generic Editor

Scene Editor

Build Simulation
I

Run Simulation

I I

Content Editor

Plan Editor

Run Instruction

The content unit editor always works on the last built simulation. Even if
another simulation has been edited.since, the course development will apply to
the older built simulation.

Normally, the content editor is started by using the RAPIDS II top-level
menu, as shown below. After clicking on the Content Editor button in the
Instruction column, a dialog box opens, asking for the name of the content
file. The RAPIDS II environment supports only one active simulation at a
time, so there is no need to name the simulation that the instructional content
will be based on -- it must be based on the current simulation.

II

Generic Editor
I

Scene Editor
III

Build Simulation

Run Simulation

I

Content Editor

Plan Editor

Run Instruction

164

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

To edit the EngineStarter course used in the examples in this chapter, specify
the content file called STARTERTASKS. After a brief delay, a set of
windows similar to those shown on the next page will open on your screen.

Another way to start the content unit editor is by invokingthe Lisp function
call ContentUnitEd,as in

(ContentUnitEd 'CourseNarne)
where 'CourseName is the name of the content unit file to be edited. Most
authorswill prefer to use the RAP/DS//Too/s menu, as shownabove.

Content Units

When you f'trst open a content editing session, you wiU see a display like that
shown below. The simulation window will contain the top scene from the
simulation that has been built in your Lisp partition. Here we see a new
course for the NewStarter simulation, just after it has been opened in the
content unit editor.

View Done 5ave Bxlt

RAPIDS AUTHORING I]:5:36

K111
Itlg_¢

@

165

ORIGINAL PAGE IS

OF POOR OUALITY

RAPIDS H Authoring Manual_ August 1990 7. Authoring Instructional Content

New

The window at the left lists the content units that have alxeady been defined
for the course, if them are any. Just above that window is a set of commands
that apply to content units as a whole. These commands are New, Edit, Copy,
Delete, and Play. They allow you to create a new content unit, or to edit, copy
(and edit the copy), delete, or play an existing unit.

I Hew ,,Edit Copy Delete Play I

At this level of the content unit editor, you can choose to create a new content
unit, by clicking on New in the area above the list of content units. Doing so
will open a new Unit Editor Window, shown below. The unit editor lists the
data fields of a content unit, along with the default values that are assigned to
certain fields.

Illr'd_,l/m)Ctta|
Name:

Comment:

SystemConfiguration: Current Conflgural;1on
Expositionbefore student action: Not Oeflned

Expositionafter student action: Not Oaf Ined

Order of prmentation: Randoe
Prment ktentE_ng text in test mode? Iffil Ho

Edit To acquaint yourself with the editor, you should first use the unit editor to edit
an existing content unit. To edit a unit, you must first select it, by clicking on
its name in the list of content units. The selected unit name will then appear
inversed (that is, as white text on a black background).

ont'ntUrut_

|_|llI) [][1_| Ill l l|l i ;/i I liiL

Oiver_eP Valve [n_eractions
Left EnQlne Start on Ground

Righ_ EnQtne Star_ on Ground
S_ert vhen en91nes die tn _he air

EngineStarter Test
Iden_tfy sources

If, after selecting the unit called 'Introduction to Parts,' you click on Edit,
you will see the unit editor window open at the top of the simulation window.
It will display the values of the data fields associated with that unit, as shown
below.

166

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

|m=-l_*ItHI
Name: Introduction to Parts

Comment: A slmp]e identification task wlth random

System Configuration: Current Configuration

Exposition before student attion: Bar 1ned
Exposition after student action: Not Oe?lned

Order of presentation: _ Sequential
Present identifying text in test mode? i_m No

order of presentation

Copy

Oelete

Play

The meanings of each of the data fields for a content unit will be described
later in this section.

It is often useful to model one content unit on another that has already been
defined. You can do this by selecting the unit that you want to base a new unit
on and then choosing Copy from the menu of content-unit-level commands.
The new copy of the unit will immediately be opened for editing. Since it will
have exactly the same data as did the original unit, the first thing you should
do is to change the name of the unit.

Choosing the Delete command from the menu of content-unit-level
commands will cause the currently selected content unit to be deleted. The
editor will ask you to conf'trm that the unit should actually be deleted by
clicking the left mouse button. If you click the right mouse button, the delete
command will be aborted.

You can see how a content unit will appear to students by choosing the Play
command, which applies to the currently selected content unit. A menu will
appear asking whether you want to go through the unit in Drill or Test mode.
After you make one of these selections, the screen will change its appearance.
The command buttons in the upper left comer of the screen (Menu, Replace,
Find Object, and Indicator) will be replaced with the Options Menu of the
student user interface (Quit, Don't Know, Test Equipment, and View). In
effect, you are now a student being presented with that content unit.

When you f'mish the unit, the student interface will disappear, and the content
unit editor will be restored. The unit you just played will still be the selected
unit.

167

RAPIDS H Authoring Manual -- August 1990 7. Authoring Instructional Content

Editing Content Unit Data

The data fields of content units are described in the remainder of this section.

To follow the examples on your own computer, be_in by selecting the
'Introduction to Parts' unit and then clicking on the Edit command. The

major windows will look something like the figure below.

View]_cne Save Exit ,,

CONTENT UNIT 0:5:36

CW: A Itlple tdeflttft¢lttOn telk v+th rend0m prlSlntltlofl Or_lr

Sytemfed_vrltM: tnttt41 State

[xpo_tkmbdoreJt_kmt_tkm: Oetlnea

[qmdt_xhorAudent_t_: _t Oef_ed

Ord_dFMatk_: _ Sequential

PrluMmt_mtfybtgtctt_te_moOel li No

The list of content units that was on the left of the simulation window has
now been replaced with a list of the d_f'med content items for the content unit
that is being edited. Above this list of content items is a menu with three
choices: New, Edit, Move, and Delete. These commands apply not to the
content trait as a whole, but rather to content items. The next section will
discuss content item editing.

In the remainder of this section, the other data elements of a content unit are

described, along with how they are edited. Those elements are:

168

ORIGINAL FAGE IS

OF POOR QUALITY

RAPIDS 11Authoring Manual-- August 1990 7. Authoring Instructional Content

Name

Comment

System
Configuration

• Name
• Comment
• System Configuration
• Exposition before content unit
• Exposition after content unit
• Order of presentation
• Present identifying text in test mode?

In most cases, you will find that you can learn how to enter or edit these data
elements simply by trying to do so. The first step is to click in the field.

Click on Name in the content unit window, or click anywhere in the name if
one has already been defined. The typing cursor appears at the point that
you've clicked. You can delete letters by backspacing and type a new name.
The name of a content unit can include spaces.

Introductionto PartsA [

If you fai/to give a content unit a name and choose Dane in the top menu, the
name will be shown in the list of content units as '- - -'.

The comment associated with a content unit is edited in just the same way that
a name is. Click where you want to enter or delete material and type normally.
This data field is optional. The comment is never seen by students; it is meant
only as an aid to courseware documentation for authors.

When you click on the System Configuration command, the content unit
window disappears, so the simulation window has nothing overlaying it. The
list of content items at the left is replaced with a list of defined system
configurations.

= New Rename Delete

5ystero Confi, :uration_
Current Conflguration

II r---_...."_-

If one of these is a defined state of the simulation that you want to have
installed when the content unit begins, you can simply click on it to select it (a
system configuration called 'Initial State' has been selected in the above
figure), and then click Done on the menu bar above the simulation window.
At this point the content unit window will reappear, and the list of defined
system configurations at the left will be replaced once again by the list of
content items for the unit.

Initial State is a special pre-def'med state. It is the state that the simulation was
left in when it was last saved in the scene editor. (Hence, this is the state that
the simulation will be in after Build Simulation is carried out.)

169

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

Defining
a New

Configuration

Current Configuration has a different meaning from all the other corffigtwation
names that can appear in the list of system configurations. When an author
selects Current Configuration, it means that it doesn't matter what
configuration is installed when the unit is started; the author is indifferent. Be
careful not to use this option if students will be required to manipulate
switches or if the lesson fragment discusses any aspect of the displayed
system configuration. Students may see a quite different simulation state,
depending on what happened in the previous content unit.

Sometimes you may want to begin a content unit in a system configuration
that has not yet been defined. If so, you must define the new system configu-
ration. Note that the menu bar above the list of defined system configurations
has three commands relevant to system configurations. Choose the New
command to begin defining a new configuration. You will be asked to name
the new configuration.

View Done Save Exit

Configuration name>)

New Rename Delete

Current Configuration
Initlal State

_v_tem Confi(_uration_

The new configuration can be based on an existing configuration, including
the Initial State. This means that a previously def'med configuration can be
loaded in to serve as the starting point for defining a new configuration.
Choose from the list by clicking on the desired configuration in the menu
labeled System States. This menu is shown in the figure below, just above the
upper left comer of the Display Window.

17o

RAPIDS II Authoring Manual -- August 1990 7. Authoring Instructional Content

View Done Save Exit

Which system state do you want to use as
a starting point for creating this new
configuration?

Initial State

SYSTEM CONFIG.

Rename

Current Configuration
Initial State

0:8:49
Delete

A system configuration can include failure states for components of the
device. This means that before a content unit is started, the selected
component failures are entered into the simulation. Most system
configurations don't include failures, so the author ordinarily simply clicks on
Done in the menu above at this point. See the figure below.

View Done Save Exit
i

All test equipment has been disconnected.
All failed objects have been replaced.

You may open or close subscenes on the
scratch pad.

You may insert failures into the system.
When all have been inserted, select "Done".

Select the object that you want to fail.

New Rename Delete

Current Configuration
Initial State

-_v_tem Conficluration_

Then the author manipulates the simulation switches, just as the student
would. When the desired simulation state is achieved, clicking on Done marks
that state as the new system configuration. The figure below shows the
prompts that appear at this point in the process of defining the system
configuration.

171

RAPIDSHAuthoringManual_ August 1990 7. Authoring Instructional Content

During this phase authors can change scenes normally so that they can
manipulate switches on other scenes. They can also -- using the commands
on the right button menu -- open and position scratchpad scenes. (For more
information on the Object Scratchpad, see Chapter 5.) As you click on
swiiches to set them, a textual transcript of your actions will appear in the
Message Window. In the example shown above, a new system configuration
is being defined that begins with the Right Start Button being put into the
Pressed position. When you have finished setting up your new configuration,
click on Done on the menu bar above the simulation window.

View Done Save Exit

You may insert failures into the system.
When all have been inserted, select "Done".

Select the object that you want to fail.

Set the switches to put the system into the
appropriate configuration.

When all have been set, select "Done".

New Rename Delete
-}¥stertl Confi_ t_r;_tions

Current Conftgunetlon
Initlel State

At this point the author is asked whether to save the whole configuration or
simply the sequence of steps gone through to set up the simulation. A menu
appears in the object scratchpad area presenting these two choices, along with
the option to abort the clef'tuition of this system configuration. (See below.)
Either saving the whole configuration or the switch sequence will work. If the
switch sequence is short, that is usually a better choice, because it requires
that less data be stored and retrieved. On the other hand, when such a system
configuration is reinstalled, it actually goes through the process of simulating
each switch throw in turn, so students may observe a good deal of possibly
mysterious simulated activity at the beginning of a unit as the configuration is
installed.

172

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

View Done Save Exit

8tart Button
CurrentState: Pressed

want to save the entire system
or just the sequence of

switch settings?

If you abort, the system configuration will
revert to what it was before you set the
switches and nothing will be saved. Save Configuration

Save Switch Sequence
Abort

SYSTEM CONFIG.

New name

Currant Configuration
Initlal State

0:1:56

)elete

Left Start Button

After one of the two Save options is selected, the new system configuration
name appears in the list of configurations. Here a system configuration called
Left Running on Ground has been defined.

New Rename Delete

Currant Configuration
Initial State

5ystern Configurations

Left Running On Ground

Other

Configuration

Options

Content Unit

Expositions

When you have selected System Configuration in the content unit
window, you can also perform two other system configuration options --
renaming and deleting defined configurations. To exercise either capability,
you must fu'st select the configuration by clicking on its name in the list of
system configurations. Then choose the command you want from the menu
above -- Rename or Delete.

Before using the Delete command, however, be aware that it may be
dangerous. Other units may call for the deleted configuration. If so, they will
thereafter install the 'Initial State' on startup. You will be warned of this

danger if you begin to delete a configuration that is used by another unit.

Rename is not similarly hazardous. If you rename a system configuration, all
the content units that use it will automatically refer to it by its new name.

There are two exposition fields for a content unit, Exposition before
content unit and Exposition after content unit. The expositions you
create for these fields will b¢ presented to students at the beginmng and end of

the content unit, respectively.

173

RAPIDSHAuthoringManual_ August 1990 7. Authoring Instructional Content

Clicking on one of these fields in the content unit window will bring up the
exposition editor, which always appears to the left of the simulation window.
Because the exposition editor offers a rich set of options for creating
presentations to the student, it is described in a separate section later in this
chapter.

Once an exposition has been created, the word 'Defined' appears near its field
name in the content unit window. See, for example, the Exposition before
content unit field below.

.lnit Editor

Introduction to Parts

Comment: A simple identification task with

SyRem Configuration: Current ConF Igurat ion

Exposition before student a(tion: Oef I ned

Expo;ition after student a(tion: Not Oefined

Order of presentation: _ Sequential

Present identifying text in test mode? i_ No

random order of presentation

Order of

Presentation

Identifying Text
in Test Mode?

You can decide whether you want the content items of the current unit to
always be presented in a fixed order (the order in which they are Usted in the
Ust of content items) or randomly. Simply click on the option you want for
this field.

In a newly created unit, the default ordering of content items is sequential.

As you will seein the next section, each content item has an identifying text
that helps specify what student action is required. In most cases, this text
should be used in constructing a prompt for the student. Yes is the default
value of this field of a new content unit. In rare cases, an author wants to
require that a student perform a series of steps without any prompting when
the content unit is presented in test mode. In this circumstance, the option No
must be selected.

In the other two modes, instruct mode and drill mode, identifying text will
always be presented. This option allows you to eliminate identifying text in
test mode only.

174

RAPIDS H Authoring Manual --August 1990 7. Authoring Instructional Content

The Content Items Menu

New

Edit

Content items are usually the most important parts of their content units. They
prescribe what actions a student must take while working through the content
unit. Each content item may have associated expository material, as well.

Content items appear in a list to the left of the simulation window while you
are editing a content unit. At the top of this list is a menu bar with four
commands that apply to menu items: New, Edit, Move, and Delete.

The New command will create a new item and open an item editor window
with default values for the four data elements.

When you are editing a content unit, the list of its content items appears in the
window to the left of the simulation window. To edit one of these items, first
select the item by clicking on it. In the figure below, an item called 'Find the
emergency power switch' has been selected. Then click on Edit in the menu
above.

New Edit Move Delete

_ems
lnd the emergency _ower switch

Find the cross-start -F_-_y
Find the left igniter timer
Flnd the right igniter timer

An Item Editor Window, such as the one shown below, will then open at the

top of the simulation window.

IU(r,,l fill @[P ft.(el

Identifying text:
Exposition before student a(tion: Nat Defined
Exposition after student action: Not Oeflned
Adion: Swttch Menu Find Indicator Replace
Toleran(e: 9

Adiontime start: 9
Attiontime end: 2147483647

Time to wait after action: 0.0

Simulator _atm: On

TestEquipment FreePlay

The Content Item Editor Window

175

RAPIDSHAuthoringManual-- August 1990 7. Authoring Instructional Content

Move

Delete

Clicking on Move in the menu bar above the list of content items signals that
you want to move the selected item to a different point in the list. It doesn't
make much sense to move an item if the unit uses random presentation, but
Move is commonly used to reorder items in sequential units.

When you issue the Move command, a prompt will appear that asks you to
click on the item that the selected item should appear after.

Select Io(atlon to move item after (to move to beginning of list select first item and choose the
appropriate menu response)

If you pick the f'trst item in the list of content items, a menu will appear that
asks you whether the originally selected item should appear before or after the
fast item.

JSelect location relative to selection
Before
After

The Delete command is used to remove the selected content item. When you
choose Delete, the content item editing window appears with the item to be
deleted displayed in it. You are asked to confirm the deletion by clicking the
left mouse button. When the deletion is confirmed, the editing window is
closed and the item is removed from the item list.

176

RAPIDS II Authoring Manual --August 1990 7. Authoring Instructional Content

Content Item Data

Content units contain four data elements: identifying text, optional pre- and

post-expositions, and a student action. The authoring of student actions is
covered in some detail in the next section.

i_(_t|ii[_lL(il

Identifying text:
Exposition before student action: No_; Defined

Exposition after student action: Not; Defined
Action: Switch Menu Find Indicator Replace

Tolerance: 0
Actiontlme start: 0

Actiontime end: 2147483647
Timeto wait after action: O. 0

$1mulator status: On

TestEquipment FreePlay

Identifying Text

Item Expositions

Action

Done

You can edit Identifying Text in much the same way that content unit names
are edited. The next section of this chapter, Student Actions, describes how
the identifying text of an item can be automatically generated by the RAPIDS
II editor, based on the student action.

The optional pre- and post-exposition elements of a content item are created
and edked with the Exposition Editor, which is described later in this chapter.
If you click on one of these fields ('Exposition before student action' or
'Exposition after student action') in the item editor window, then the
exposition editor will open at the left of the simulation window.

This field lists the seven types of student action that can be required in a
content item. Each one of these action types (Switch, Menu, Find, Indicator,
Replace, Test Equipment, and Freeplay) has its own ways of being authored.
So far as possible, each such action is authored by simply carrying out the
action, just as the student would. The details of these authoring processes are
described in the next section of this chapter.

When you have finished editing a content item, click on Done in the menu
bar above the simulation window. The item editor window will close and be

replaced with the content unit editor window for the content unit you are
working on. The content item list will still be displayed on the left. You can
edit another item by selecting it and clicking Edit again.

177

RAPIDSHAuthoringManual-August1990 7.AuthoringInstructionalContent

Student Actions

Finding Objects

There arc seven kinds of student actions that can be prescribed in a content
item. They are:

• manipulating one or more switches into specified states
• make one or more selections from a menu of text items

• 'Finding' by either
clicking on one or more objects in the simulation, or
clicking in a region on a scene

• noting an indicator value
• replacing a simulated object
• performing a specified test using simulated test equipment
• interacting in a free play fashion with the simulation

This section walks through the actions required to author each of these student
action types. You should be able to carry out the process on your own
machine.

If you have been following this text by carrying out the illustrated operations,
you are now in the unit called 'Introduction to Parts.' Try recreating one of
the content items in this unit. Delete the item called 'Find the emergency
power switch.' Then select New from the menu bar over the item list. The
item editor window will open.

text:

Exposition before Student action: NoC Oetlned
Exposition after student action: Nog Defined
Action: Switch Nenu Ftnd Indicator Replace
Toleran(e: e
Action time start: 8

A(tlontime end: 2147483647
Time to wait after a(tion: 0. e

Simulator Status: On

TestEqutpment FreeP]ay

Leave the Identifying text field undefined for now. Click on the Action field.
The item editor window will disappear and a message will appear in the left
window asking you to select from the options menu or to throw a switch.
Click on Find Object in the options menu, as shown below. A menu will
pop up asking what type of action this is: finding one named object, finding
several objects, or finding a region.

178

RAPIDS H Authoring Manual- August 1990 7. Authoring Instructional Content

View Done Save

What type of action is this?

Exit

qnd the named object
Find one of several objects

Find several objects
Find the re ion

ACTI ON ITEM

New Edit

fl:1]:16 _Left Start Button

Click on Find the named object. The message window will then ask you
to 'Select the object that the student must find.' The left start button is the
switch at the top left of the simulation scene (see the figure above). Click on
this switch.

The item editor window will now reappear. The identifying text field will
have in it the phrase 'Find the Left Start Button.' You can now click in the
identifying text field and edit this phrase to say whatever seems appropriate,
such as 'Find the switch that starts the left engine' Very often, authors are
happy with the automatically generated phrase, and no editing is necessary.

iLl;161n_[OiL(ll

Identifying text: Find the Left Start 6utton.
Exposition before student artion: Not Oaf 1ned

Exposition after student action: Not Defined
Action: 8witch Menu _ Indicator Replace
Tol_ran(e: 0

Action time start: 0
Actiontime end: 210,7483647

Time to wait after a(tion: _, 0

;imulatorstatus: On 1111111

TestEquipment FreePlay

Finding One
of Several
Objects

Sometimes you may want to ask the student a question for which there is
more than one correct selection. Suppose, for example, that you want to ask
the student to click on one of the possible sources of electrical power in the
EngineStarter simulation. RAPIDS II lets you author a Find Object type
student action that accepts any of a set of objects as the correct answer.

To begin authoring your 'Find a source of electric power' item, choose the
New command to create a new item. Click on the Action field in the item
editor window, and choose Find Object in the option menu, just as you did

179

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

for the single-object f'md action above.
When the type of action menu (shown
at right) pops up, choose the second
option. J Find the named object

Find one of several objects
Find several objects

Find the rel_ion

You will then be prompted to select all the objects that would constitute
correct student actions for this content item. This prompt appears in the
message window, as shown below.

View Done Save Exit

What type of action is this?

Select all the objects that would be correct
responses for the student. When all objects
have been selected, click on "Done".

Left Generator
Right Generator
External Power
Emergency Power

There are three possible sources of electrical power in the EngineStarter
system: the two generators and the external power unit. Click on each of these
in the simulator window.

T

I Generator

I External I _"Power)

Kill

©

T

I I Generat°r [

6tnePator Qenerator /
Light, Lioht

As you click on these objects, their names will appear in the message
window.

After you have designated all the correct choices, click on the Done command
in the menu bar above. You have finished authoring that student action, so the
item editor window reappears. The identifying text shown for all the Find one
of types of student action is '<noun> that <condition>.' This prompt reminds
you that you should edit this field so that RAPIDS II will ask the student to
pick one of the objects that meets some constraint.

180

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

Itext: <noun> that <condition>,

:action: Not Oeflned

_(tion: Not 0efined

A(tion: Switch _lenu _ Indicator Replace TestEqutpment
Toleran(e: 0

A_t;on t_ne start:

A(tiontime end: 2147483547
Time to wait after action: 0.0

Simulator _tatus: On

FreePlay

Finding
Objects

Several

In this case, you should change this identifying text to read 'the sources of
electrical power.'

You can also create a student action that requires that several object
designations be made. The Find several objects choice makes it possible
to require that the student select all or some specified number of a set of
objects in a simulation. When you choose this type of Find action, the
message window asks you to select all the objects that meet the condition of
interest. (See the figure below.)

View Done Save

What type of action is this?

Exit

Select all the objects that would be correct
!responses for the student. When all objects
have been selected, c#ick on "Done".

Left Generator
Right Generator

How many of these objects must the studen
t find? 2A

Click on all the objects in the simulation window that meet the condition. (If
you are working with a multi-scene simulation, use View to change scenes,
if necessary.) When you have selected all the objects that would constitute
correct responses to the find instruction, click on Done. A message in the
window above the simulation window will ask how many of these objects are
required in this content item. In other words, how many object selections that
meet the specification should RAPIDS II ask the student to perform?

Type in a number and press the Enter key. You have finished authoring that
student action, so the item editor window reappears. The identifying text
shown wiU be '<noun> that <condition>.' Replace this with text that would
make sense when preceded by the instruction "Find n ", where n is the
number of required identifications. If your identifying text is "parts that

181

ORIGINAL PAGE IS

OF POOR QUALITY

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

Finding a Region

provide electrical power under normal flying conditions" and n for a Find
several objects content item is 2, then RAPIDS II will ask students to

Find 2 parts that provide electrical power

under normal flying condlUons
Using Find several objects, you can require identifying all of a class (without
constraining the order in which students make their selections), simply by
setting n to the number of objects in the class. You can also require only that a
certain number of the objects described be selected by the students. RAPIDS
II will permit these selections to be made in any order.

It is also possible in RAPIDS II to ask the student to click anywhere in a
region on the simulation window. The third option in the type of action menu
is Find the region. When you make this choice, the mouse pointer changes
shape and you are asked to drag out a rectangle that surrounds the region in
which you want the student to click.

When you finish dragging out the window, the item editor window returns.
The generated identifying text specifies the region that is to be selected. (See
the figure below.) You can edit this text to create a more interpretable prompt
for the student.

Performing
Switch Changes

Your lessons can also require specific switch manipulations by the student.
Unlike a Find Object action, a switch manipulation will actually affect the state
of the simulation, both during authoring and in the student environment. It is
therefore easy to author a sequence of related simulation actions in a content
unit.

Try authoring the actions of a 'Left engine start on ground' unit for the
EngineStarter course. To carry out this example, begin by selecting New to
create a new content unit.

Name:
Comment:

System Configuration: Inir,ial Sr,a_,e

Exposition before student a(tion: Nor. Defined
Exposition aftei, student ad:ion: Not; defined

Order of presentation: Randou

Present ident_/ing text in test mode? _ No

Give the new unit the name 'Left Start On Ground' and then choose New
from the menu bar again. This time the item editor window will open, as in
the figure below.

182

RAPIDSHAuthoringManual_ August 1990 7. Authoring Instructional Content

i[I;ll|l_illL(il

Identifying text:
Exposition before student action:

Exposition after student action:
Action: Switch Menu F_nd
Tolerance:

Action time start: 8

Actiontime end: 2147483547

Time to wait after action: _,

;imulator status: On M

Not 0eftned

Not Defined

Indicator Replace TestEqulpment FreePlay

To author the required student action, f'trst click on the Switch option in the
Action field. The message window will prompt you to 'throw the desired
switch'.

_imulation windowOne of the strengths of the RAPIDS II
approach to authoring is that it lets you specify
many student actions by performing them. All
you have to do to author this student action is
to click on the left start button (the object at the
top left comer of the simulation window).

After the effects of the switch throw have occurred, click in the clock window
to stop the simulation. This marks the end of the required student action.

Identifyingtext: Set switch Left Start Button to Pressed,
Exposition before student action: Not Del"_ned

Exposition after student action: Not Defined
Action: _ Menu F_nd Indicator Replace Test.Equipment.
Tolerance: B

Actlontime start: 0
Actiontime end: 2147483647

Time to wait after action: 11,591

Simulator_tatus: [] Off'

FreePlay

Replacing an
Object

Just as with Find Object authoring, authoring of simulation actions also
generates identifying text automatically. Naturally, you can edit these phrases
if you want to. Click Done in the top menu bar to end the creation of this
switch-based content item.

Your RAPIDS II lessons can require that the student replace a specified
object. This feature is used in maintenance training sessions that call for the
student to follow a sequence of troubleshooting actions that includes one or
more replacements. Authoring such a student action is straightforward. First
select Replace from the options menu.

183

OR_GINAL PAGE IS

OF POOR QUAL/TY

RAPIDS H Authoring Manual- August 1990 7. Authoring Instructional Content

Then, in response to the prompt in the message window, click on the object in
the simulation window that the student should replace. When the simulated
effects of the replacement have occurred, click in the clock window to stop the
simulation. Then the item editor window will reappear and you can edit the
identifying text.

indicator Tests You can require that a student identify the value displayed by an indicator.
RAPIDS II will help you compose a menu of choices for the student,
including the value actually displayed.

You can experiment with this authoring capability using the EngineStarter
system. Create a new item in an existing content unit. Click on the Indicator
button in the actions menu. You will then be instructed to

Select the indicator.
After you make an indicator selection (by clicking on the object), identifying
text will appear in the top field of the Item Editor window. This text can be
edited.

..... 7i1_1
Identifyingtext: Find t'he Left' Engine Instruments and check its stat'e.

Exposition before student action: Nor, 0ertned
Exposition after student action: Nor, Oeftned

Action: Svtt'ch Nenu Find _ Replace Test'Equipment' FreePlay
Tolerance: g

Action time start: g

A(tlontimeend: 2147483647
Time to wait after action: O. g

Simulator status: On

Menus: Multiple-
Choice
Questions

In RAPIDS II, you can present multiple-choice questions to the student. The
choices are always presented in the form of a menu. RAPIDS II supports four
types of multiple-choice questions. When you begin authoring a student
action and pick the Menu command from the options menu, you will see a
menu of four choices appear in the scratchpad area:

Name the highlighted object l
One of one IOne of several

All of several

Whichever of these four types of menu-response student action you choose,
you will be asked to build a menu of possible choices. The student interface
for building these menus is the same as that used for authoring test equipment
values, as described above.

One highlighted object. After you choose the option, you will be asked
to select the object that should be highlighted. Indicate the object by clicking
on it. You can then edit the menu of choices, which will include the name of
the item you indicated. You won't be able to exit menu editing until you
provide at least one other choice.

184

RAPIDSHAuthoringManual-August1990 7.AuthoringInstructionalContent

View Done Bare Exit

To add a menu entry, select "Add Menu
Entry", then type the new entry.
To change a menu entry, select it, then
type the new entry.
To delete a menu entry, select it, then type
"Delete".
When the menu is correct, select "Menu is
OK".
Menu item)) Emergency Power Circuit
Menu item)) SpaceShuttle

Emergency Power Circuit
Right Relay
SpaceShuttle

Add Menu Entry
Menu is OK

The editor will next ask you to indicate the correct choice in your menu. The
item editor window will then reappear with the identifying text, "Name the
highlighted object." You might want to change this to be more contextually
appropriate.

One of one. This type of menu offers a set of text choices, with only one
correct answer. When you choose this option, you are given the opportunity
to construct a menu of text items. When you indicated that Menu is OK,

you will be asked to pick the right answer from the menu.

The identifying text constructed for multiple choice menus should be edited to
something more readable. It often makes sense to make use of the pre-
exposition in defining a menu-type content item, as well.

Identlfyingtext: <nouns> that <condit.ion>.

Exposition before student action: Not 0efined

Exposition after student action: Nor. 0ef ined
Action: Switch Menu _ Indicator Replace
Tolerance: 0
Actiontime staR: e

Actiontlme end: 2147483647
Time to wait after action: O, 0

Simulator status: On

TestEquipment FreePlay

One of several. This option is to be used when you are happy to take any
one of several correct menu responses from the student. You will use the
standard menu-construction options to build up your menu. Then, after you
have chosen Menu is OK, you will be asked to select all the correct
answers. When you have picked them all, click on No More Answers, at
the bottom of the menu.

185

ORIGINAL PAGE 18

OF POO OO rr

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

View Done Save Exit
Menu item_ Lett h;tart button
Menu item)) Right Start Button
Menu item)) Left Throttle
Menu item)) Right Throttle
Menu item)) Emergency Switch

What are the GorreGt choices from this

_eft Start Button
Right Start Button

Emergency Switch
Left Start Button

Left Throttle

Right Start Button
Right Throttle

No More Answers

As in the case of single-answer menus, the composed identifying text will
need to be edited.

All of several. This type of menu-based student action is one that
requires that the student click on more than one answer in the menu. After
you compose the menu using the same approach outlined above, you will be
asked to designate all the choices that will be required for this menu.

Such a menu might be used to provide answer choices to a question such as
"What are the possible power sources for a normal (non-emergency) engine
start operation?"

186

RAPIDS H Authoring Manual _ August 1990 7. Authoring Instructional Content

Expositions

The RAPIDS II exposition editor is automatically invoked whenever you click
on an exposition field in the unit editor window or in the item editor window.
The exposition editor appears as a set of windows and menus to the left of the
simulation window, in the same area that is used (in the student environment)
by the message window.

CU EXPOSITION 0:0:16

Add I Done Move
Edit I Delete Run

Text:Take some time to look over the engine
starter system schematic shown at the rtght,
Note the names of the elements, anda

-_=-Left 8tart Button

:xposition

Using this editor, you can create expositions that

• present text in the message window
• clear the message window
• wait for a student click

• wait for a specified amount of time
• play a videodisc segment
• highlight an object in the simulation window
• highlight an arbitrary region in the simulation window
• change the scene displayed
• perform afloating window operation

Expositions consist of sequences of exposition elements. You can select an
element by clicking on it. In the exposition shown below, a floating window
element (one that opens a window) has been selected. When you choose the
Add menu item, a pop up menu with two choices: Before and After appears.
The new exposition item you are about to create can be placed either before or
after the selected item.

187

ORIGINAL PAGE IS

OF POOR OuAu'rY

RAPIDS 11 Authoring Manual- August 1990 7. Authoring Instructional Content

Add l Done l MoveEdit Delete Run

-_-xpo_ition
Clear-Text:

Text:
Take some time to look over the engtne starte
r system schematlc shown at the rlght. Note ti
he names of the elements, and try to understa i
nd the flow of electrlca] power through the s I
ystem. When you ere ready to identify a few p

arts, click the left mouse button.

After you choose Before or After, you will see a menu that offers the choice
of all the different types of exposition items, as shown below.

i| ii [-_.= --__-__o||_

Text
Clear-Text

Wait-for-student
Wait
Yideo

Htghlight/Unhighllght-Object
Hlghltght/Unhtghlight-RegJon

Show-Scene

Floating-Window

If you choose Text, you will be invited to type your text element in the area
just under the exposition window menu bar. The text word wraps
automatically, so you don't have to use the return key. Typing the return key
ends the entry of the text element. At this point the text you have entered will
appear as an element in the list of exposition elements in the exposition editor.
It will be preceded by Text: in bold, as you can see in the accompanying
figures.

If you choose Clear-Text, the element label Clear-Text: will appear in the
list of exposition elements. In the student environment, a Clear-Text element
will have the effect of erasing the message window.

Wait-for-student, will also simply add a label to the list of exposition
elements. At run-time, this element will make the cursor shape change to a
mouse with the left button highlighted, signalling that the student must click to
go on.

188

RAPIDS H Authoring Manual- August 1990 7. Authoring Instructional Content

If you choose Wait, you will be asked how many seconds the exposition
should wait before preceding to the next exposition element. Type a number
and the return key.

The Video option in the Which Type? menu is used
to specify an exposition element that will play a
video segment to the student. When you choose this
option, a menu will pop up that lets you specify
which video segment you want to play.

I Single-Frame
IFrame-Sequence

If you select Highlight/Unhighlight-Object, then you will be prompted
to click on the object that you want to highlight or unhighlight.

If you choose Highlight/Unhighlight-Region, then you will be asked to
drag the mouse pointer from the top left to the bottom right of the rectangular
area that you want to have highlighted.

The Show-Scene command on the Which Type? menu has the effect of
changing the simulation scene displayed (both in the authoring and in the
student environments). Use this command to change scenes under the control
of an exposition.

If you select Floating-Window from the Which Type? menu, you will be
presented with another menu that offers you the choice of floating menu
operations. See the figure below.

Add I Done I M°veEdit Delete Run

-xpo_ition
Clesr-Text:

Text:
There are four posstble sources of electrical
power for the engtne starting system,

Valt-for-student:

HtghllghtlUnhtghllght-ObJect: External Power

Floatlng-Vlndov: clear wlndow

iF]oattng-Vlndov: reshape: (-1 265 169 92)

Floatlng-Vindov: show text:
When the aircraft Is on the ground end its en
gtnes are off, an external power unit provide
s electrical power,

189

RAPIDSII AuthoringManual-August1990 7.AuthoringInstructionalContent

A floating window is a window of a shape and size determined by the author
that 'floats' above the simulation scene. When you want to create and use a
new floating window, your exposition will typically contain a sequence of
Floating-Window operations: first a Shape, then an Open, followed by a
Text action. If you want to, you can re-use the floating window, clearing it,
moving it, and sending text to it again. Eventually, you will want to Close
the floating window.

)elete

There are four possible sources of electrical
power for the engine starting system.

Find the External Power. i
IL_ft
Fhrottle

II

When the aircraft is

on the ground and its
engines are off, an
external power unit
provides electrical

po;.er.w I_1 I I

A Floating Window with Text

190

RAPIDSHAuthoringManual-August1990 7.AuthoringInstructionalContent

Using Play to
Test a Unit

After building a content unit, it is a good idea to Play the unit in the content
editor. After you select the Play option, you will be asked what mode you
want to use. See Chapter 2 for a discussion of the three instructional modes.

View Done Save Exit

Do you want to play this content unit in
INSTRUCT, DRILL or TEST mode?

Co

Instruct
Drill
Test

.mm. Left 8tart

I I I I

The Global Editor Commands

Save

Exit

The menu bar at the top of the simulation window contains three commands,
Done, Save, and Exit. As you have already seen, Done means that you are
done defining a content item when the item edkor window is open, and it
means that you are done defining a content unit when the unit editor window
is open.

Save will save the current set of content units, preserving any changes you
made since the last save.

Exit will close the content editor, ending the current authoring session. You
will be asked whether you want to save changes.

191

8

Instructional Organization

This chapter deals with creating and editing instructional plans. A training
course must have an instructional plan (or instructional organization), which
determines under what conditions each content unit will be presented to a
student. A course's instructional organization also determines in what mode a
content unit will be presemed: instruct mode, drill mode, or test mode.

As Chapter 1 pointed out, instructional plans can be authored before, after, or
in step with content unit editing.

cSimulation -
onstruction)

cSimulation

onstructionJ

V cSimulation "_

onstructionJ'_ f Content
ganization [[Authoring)
Authorin/zJ

_ fInstructiona1"_ (Content

flnstmctional_ I Organization I L

(ContentAuthoringj .I Organization/Authodn,J _ Authodnl_ J Authoring)

Parallel Development

Plan Before Content Content Before Plan

In the figure above, the darker boxed items represent the process of building
instructional plans.

192

RAPIDSHAuthoringManual-August1990 8. Instructional Organization

A Sample Instructional Organization

The figure below displays an example of an instructional plan that takes
advantage of defined content units created for a course called
ENGINESTARTER.

Exit

Save

AddUnit

]3eleteUnlt

MoveToParent

MoveToTop

MoveToNcde

.qetDepth

ReposltionUnit

CourseParams
,,.,_..............
Name °. [lelllmtlry 0rt11

Comment:
Order of presentation: Randol

Content:
Unit Weight Mode Condition

StirT. Loft Or1 4- 0,'111 Nor. doftnod

Start. Right Or 1 0r111 NOt deftned

•_..._.'i_?_';";_'"_;;';;_
JOevtce Or(]onlzar. lor,._/,,,,,,,,-,_,,,,H,,,,,,,;.

' Otverter Valve [ntr_

/ ___;_;c;____;;,

lnlro tO oliritton_isli_r,_,,th.,_n..Oeld_-.;-;......::,:..:tn ltr................[ntro:

" _'t&dvin¢eel Ol-lll_--_.'S_;rt, Vhen Oiicl tn Atr" 0r111!

Maximum Minimum Limit Accuracy Speed

-°° J.

Starting
Editor

the Plan To start the instructional organization editor, use the Plan Editor option in the
RAPIDS II tools menu. You will have to provide two parameters, PlanFile
and ContentFile. PlanFile is the name of the file that has the plan for the
course; ContentFile is the name of the file containing the content units that the
course should contain. ContentFile does not have to be specified if it has the
same name as PlanFile.

::IAPIDS Tools

lmod File: 8TARTERPLAN
Content Untt Fae: STARTERTASK,_

Scene Editor Plan Ed,to r

Run Simulation

193

ORIG;NAL PAGE IS

OF POOR QUAlifY

RAPIDS H Authoring Manual _ August 1990 8. Instructional Organization

The Editor's
Windows

Alternatively, one can start the organization editor for the simple
EngineStarter course, by typing

(ImodEditor 'STARTERPLAN 'STARTERTASKS)
in an Exec window. The same name can be used for both files. The
actual file names on disk have appended three-letter extensions that
serve to specifywhich type of data they containm instructional plan or
content units. Most authors will prefer to use the RAPIDS II Tools
menu.

The largest window of the instructional plan editor is its tree window. This
window displays a tree of organizational units that organize the content of a
course in a hierarchical fashion.

To the left of the tree window is the instructional plan editor's menu. The top
two commands (Exit and Save) apply to the planning session as a whole.
The other commands have effects on particular nodes in the plan.

Above the tree window is a message window for the display and entry of text.

Below these windows is an organizational unit editor window. Here data
associated with particular nodes can be entered and edited.

Creating a New Instructional Organization

One way to get acquainted with the instructional plan editor is to build a plan
from scratch. Begin by starting the editor with a new PlanFile name. For
example:

(ImodEditor 'MYSTARTERCOURSE 'ENGINESTARTER)
The editor window will open with a display that includes only the top node of
the new instructional organization, as in the figure below.

Exit

Sswe

AddUnlt

DeleteOnlt

MoveToPnrent

MoveToTop

MoveToHode

_]etDepth

RepofltlonUllit

CouraePerams

If you click on the node, a new window will open below, showing the data
associated with the selected node. As the figure below shows, the top node

194

RAPIDS H Authoring Manual- August 1990 8. Instructional Organization

will be highlighted to show that it is selected. The organizational unit editor
window below lists the data fields associated with an instructional unit.

Exit

Save

_ddUnit

DeleteUntt

MoveToParent

MoveToTop

MoveToNode

SetDepth

RepositlonUniti

CourseParams

i,iill lllll _1 I1|1 .zl | ii111 i

Name: TOp Mode

Comment:

Order of presentation: Itandoll
Content:

Unit Weficbt Mode Condition Maximum Minimum Limit Accuracy SpeeC

Associated with each unit called in a plan are these data fields:

• weight:

• mode:

• condition:

• maximum:

• minimum:
• limit:
• accuracy:

• speed:

the importance of the called unit (relative to the others in
the list)
whether to execute a called content unit in Instruct, Drill,
or Test mode

an optional expression that controls whether to present
the unit
the maximum number of times to present the unit
the minimum number of times to present the unit
the time limit for the unit, in minutes
the accuracy score (%) required to complete the content
unit successfully
the speed score required to complete the content unit
successfully

Certain of these fields apply only to content units. The mode, accuracy, and
speed fields have undefined values for organizational units. The data fields
used to control the presentation of organizational units are condition,
maximum, minimum, and limit. (Although accuracy requirements for

organizational units are not authored as field values, accuracy scores
computed and returned in the student environment.)

195

RAPIDS H Authoring Manual --August 1990 8. Instructional Organization

Menu Commands

In the
Instructional Plan
Editor

AddUnit

DeleteUnit

MoveToParent

MoveToTop

MoveToNode

SetDepth

RepositionUnit

CourseParams

The menu to the left of the organizational tree window
lists the top level commands of the instructional plan
editor. The effects of most of these commands are with
reference to the currendy selected node. Add Unit,
for example, adds a new descendent of the currently
selected unit. Delete Unit deletes the selected unit.

Try adding a unit to the top node in your otherwise-empty course. When you
click on Add Unit, you will be asked whether the new unit is to be an
organizational unit or a content unit. Click the left button if you want an
organizational unit; click the right button if your want a content unit.

Exit

Save

left button for in Urganlzatlonal Unit_ ¢llck right button 1'or a t;onten% Unit.

Choose the left button now, to specify that you want a new organizational
unit. You will be asked to name the unit. Type the Return key when you have
finished entering the name.

Exit
Pleasi I the _ Organizational Untt))A

Type in the name 'Device Organization' now. Notice that the unit editor
window for the top node now displays data for the new node you have
created, as is shown in the figure below.

196

RAPIDS H Authoring Manual _ August 1990 8. Instructional Organization

Exit

_8ve

AddUnJt

DeleteUnlt

MoveToParent

MoveToTop

MoveToNode

SetDepth

Reposit|cnUnit

CourseParams _------m--_'_ Oev Ice Or(_en I za¢ Ion I

[1111|| _ til r_l l1.1 ii_,l Ill[Ill

Name: TOp Node

Comment:

Order of presentation: Rsndol
Content:
Unit Weight Mode Condition

Devtco Org4nlz. t[Dell1 NOt dor4nod

Maximum Minimum Limit Accuracy Speec

-- " • -- NIA HIA

Use the same actions to create two new organizational nodes, one called 'Intro
to Operations' and the other 'Operation Drill.' Information about these units
will also appear in the organizational unit editor window for the top node, as
in the bottom of the figure below.

Exit

Save

AddUnit

DeleteUnit

MoveToParent

MoveToTop

MoveToNode

fletDepth

ReposJtJonUnit
CourseParems
........ ..L IIIIII

Name: Top Node

Comment:

Order of presentation: _,ndo,
Content:
Unit Weight Mode Condition

Device Oe_14mtz, • 0r111 Not 4eflned

lotto to Opera" • 0r111 Not 4eflned

Dp4rotlml Dr11 1 01"111 NOt 4iof4maD

II I

Maximum Minimum Limit Accuracy Spee(

197
ORIGINAL PAGE IS
OF POOR QUA_

RAPIDS !I Authoring Manual- August 1990 8. Instructional Organization

All three of these nodes created thus far were descendents of the top node. To
create a descendent of the 'Device Organization' node, first click on that node
to select it. Then choose the Add Unit command. This time, click on the
right button to specify that the new node will be a content unit. Give the node
a name like 'Intro to Parts.' At this point, your screen should show something
like the figure below.

Exit

Save

AddUnit

DeleteUnit

MoveToParent

MoveToTop

MoveToHode

SetDeptb

Repnsiti°nUnit _ 1_
CourseParams

ii lIl_

Hame: o,vtce org,ntz,tton
Comment:

Order of presentation: R_o, I
Content:

Unit Weight Mode Condition

[nT, ro to PSrC$ 1 Oetll NOt aleflnecl

Maximum Minimum Limit Accuracy Speed

Create another new content unit called 'Diverter Valve Intro' and then select

the 'Intro to Parts' content unit in the organizational tree. A window with
content unit information will open below the tree window, in place of the
organizational unit editing window. As is shown in figure below, the actual
content of the 'Intro to Parts' node is not yet defined.

198

RAPIDS H Authoring Manual- August 1990 8. Instructional Organization

Exit

S8ve

AddUnlt

DeleteUnit

MoveToParent

MoveToTov

MoveToNode

2etDepth

RepositlonUnit

Cour_eParams

Oevtcs Or_anlzation_.i_; _
[ntro _00pwrstlons:

OPeration Orlll_

._d,d',_'_.',_' I I II II III I III II I IIIIIIIII I I II I I I II

NaI'ne: lntro to Parts

Content: not defined

To define the content, you must associate the content unit node in the tree with
one of the content units defined with the content unit editor (see Chapter 3).

The instructional plan editor knows about the content units in the file referred
to by the ContentFile parameter that was specified when the editor was
invoked. (In this example, the f'de of content units is called 'ENGINESTAR-
TER.) If you click the mouse in the area to the right of the Content label
(where it says 'not defined' in this example), a list of the content units in that
content f'de will appear, as shown below.

Exlt

Save

AddUnlt

DeleteUnJt

MoveToPsrent

MoveToTop

MoveToNode

Set]Depth

ReposltfonUnlt

CourseParams

Name: lntro to Perts

Content: not definec

Introduction to Ports
01wetter Velve Interactions

Left [nqlne Start On ground
Rtght [ngtne Stert On 8round

Start when eflgtnes dte tn the alr

EngtneStertwr Test

lllll IIi i lllilillli illllI

199

ORIGINAL PAGE IS
OF POOR QUALITY

RAPIDS H Authoring Manual- August 1990 8. Instructional Organization

This list is a menu for the content of the selected unit in the tree window. In
this case, click on the fast item in the menu 'Introduction to Parts.' The 'not
defined' in the bottom window will be replaced by the name you have chosen
from the menu, as shown below.

Exit

Save

AddUnit

DeleteUnlt

MoveToParent

MoveToTep

ldoveToNode

SetDepth _'i;_'_
ReposttlonOntt

CourseParams

I1'I'_i,_i'mlilllIIII I I I I I I I I I IIIIIIIll
Name: Intro to Parts

Content: Introduction to Parts

II III I

Carry out a similar sequence of actions to assign the content unit called
'Diverter Valve Interactions' to the instructional plan node of the same name:

Name: Otverter Valve lnt.ro

Content: Dlverter Valve Interactions

As you continue to add nodes to the instructional plan, you will observe that
the tree automatically spreads out to accommodate the newly defined
elements. A course something like the one shown below is included in the
release, with the name 'ENGINESTARTER.

2OO

RAPIDS H Authoring Manual- August 1990 &. Instructional Organization

Mode

;,,,oo,oo.e,, ooo,,o,oo°ooo,

. _,Intro to Partsi
0ev ice Organ i zat i0nI_--_/_HHtHHHHHHHHt

_ .
E'le m_ntar _i/,;,,,,,,,,,,,,,,,,,,,,tUH,,,','HH/H,,,,. .

• ./ _ I/_Start R,oht Intro,
I Too NodeN''=_ tntro to uper at; ionsr_....._ :;';,;,',',';,",:;_.:;;;';;;;;'.'.'i,"

__ . _.,-_,._t'art le:l"t Orilli
_Fl*m*nr._ru nri Ill_ _HHHHHHH,HHHH'H',,,

\ /m _ - m _,'Start Right Orill]
"10peration urit/_...._ . •....................... ,....... ,,

In this course, the same content units often serve as the content of different
nodes. For example, a content unit called 'Left Engine Start on Ground' is
used as the content of two nodes in the instructional plan above. Both 'Start
Left Intro' and 'Start Left Drill' have this content unit as their content. The
difference between them is the mode in which the content unit is to be played.

There are three modes that a content unit can be played in: Instruct, Drill, and
Test. You can choose the mode that you want by cUcking the mouse on the
current value shown in the Mode column of data in the organizational unit
editor window. A menu of the three mode choices will pop up. In the figure
below, the default value of Drill has been changed to Instruct for one of the
two content units.

MoveToTop

MoveTolqode

SetlDepth

RepositionOnit

CourseParams

. ,

Irop Nodel("--'--'lIntr° _o 0per_ _%,,,,,,,;,

'_ _'-,iAdv anced__.._,,'Start

'i Advanced Or iIl'S't a'r

)rganizational Unit

Name: Elementary

Comment:

Order of presentation: Random
Content:
Unit Weight Mode Condition

Start Left Intm £ Instruct Not defined

Start Right In" £ Orill Not defined

Maximum Minimum

201

RAPIDSHAuthoringManual-August1990 8. Instructional Organization

Item Scoring

Content Unit
Scoring

Starting,
Repeating, and
Scoring Units

Student Evaluation in RAPIDS II

As a student works through a RAPIDS II course, a number of data on his
performance are recorded. The scoring of content items and content units is
automatic. As an author, you can determine what should be presented to a
student, based on his or her performance.

When an item is completed in Drill or Test mode, it returns two values:
1. an accuracy score: 1 if the student got the item correct on the fast

attempt; 0.5 if the item was correct on the second attempt; else 0
2. a speed score: the time required for the student to complete the item.

(The completion time of an item is the time at which the student
either gets the item right, gets it wrong twice, asks for the answer by
clicking on Don't Know, or exceeds the time limit of the item.

If an item is not attempted within a certain amount of time, then RAPIDS II
performs the action and presents the next item. The time limit for an item is
two times the time limit for its parent content unit, divided by the number of
items in the unit.

The accuracy score for a content unit is the percent correct, computed as
the number of items performed correctly, divided by the number of items in
the content unit (thus items not attempted due to time limits count as
incorrect). For a content unit that is attempted multiple times, the score is the
higher of a) the last complete performance of the unit, and b) the score of the
final, incomplete attempt. This algorithm recognizes a learner that nearly
finished a final round, and performed well on it, even though the previous
attempt was poorly done. It also does not unfairly charge a learner who has a
low score on a final round that was just begun; instead it uses the score on the
last complete round if it is higher.

The speed score for a content unit is the total response time of all the
items in the unit. If a content unit is not completed, the items not attempted
are essentially assigned the average time of the completed items. If a unit is
attempted multiple times, and the final round is not complete, then the speed
score for the unit is the speed score for whichever round was used in counting
the accuracy score.

Since the instructional plan might require that a unit in progress be terminated
prior to completion, due to a time limit at some level, RAPIDS II must guard
against starting or repeating a unit when there is almost no time available. If a
unit has no time limit, or the time limit is less than 3 minutes, then it is started
unless a condition causes it to be skipped or unless the time available is less
than the time limit. Thus short units are not started unless there is time to

complete them. If a unit has a time limit greater than 3 minutes then the unit is
started as long as there are at least 3 minutes available. Thus we avoid starting
a unit and then ending it just minutes later because time has expired.

2O2

RAPIDSHAuthoringManual-- August 1990 8. Instructional Organization

The foUowing process is followed if 1) there are no Conditions that control
initiation of the unit, and 2) there are at least 3 minutes available for the unit,

or it has no time limit specified:

A unit presents all of the member items or units at least one time, unless its
time limit (or a higher-level unit's time limit) is reached p.rior to completing the
first presentation. If the minimum number .of presentations is greater than 1,
then the unit is repeated until the minimum is reached or time expires. At the
conclusion of the minimum number of presentations, the student's

performance is compared to the criteria to determine if the unit should be
repeated further. An accuracy score is computed for all units as the weighted
average of the accuracy scores of the completed units. A speed score is
computed for content units as the total response times of all the called items in
the unit.

The Unit is passed successfully and not repeated if:
• the accuracy score meets or exceeds the criterion, and
• the total response time is equal to or less than the criterion

If this test fails, then the Unit is repeated (and the student scores are

recomputed) if:
• the unit has not been presented the maximum number of times, and
• the time limit for the unit, or a higher-level unit, has not been reached

Otherwise, the Unit is terminated, returning either the score on the previous
repetition or the score on the last, incomplete, presentation, whichever is
higher.

Example:
Here is the body of a particular organizational unit. It lists the member units
and the parameters which control presentation of those units:

unit wt mode cond max rain limit accuracy speed
1.1.2 I - 1 20 -
1.1.2 1 D 4 1 15 85 7
1.2 2 - 1 1 20 -

This unit first presents Unit 1.1.2 in Instruct (I) mode. The student may study
for up to 20 minutes, but, because the maximum number of repetitions was
not specified, it will be presented only once. Then the same unit is presented
in Drill (D) mode as many as 4 times. When the student can get 85% of the
items correct, completing the unit in under seven minutes, the Drill is not
repeated further. If the student cannot attain this proficiency in 15 minutes, or
after 4 repetitions, then the Drill is ended.

Finally, unit 1.2 is presented. It is an organizational unit, and it is presented
just once over the course of 20 minutes. It might consist of several content
units or even more organizational units. If the student can learn the material
and get through any drills or tests presented within the 20 minutes, then unit
1.2 ends successfully.

2O3

RAPIDS H Authoring Manual m August 1990 8. Instructional Organization

The student's score on this unit is a weighted average of the score on unit
1.1.2 (weight 1) and unit 1.2 (weight 2). Notice that the sum of the time
limits of the parts of this example unit is 55 minutes. A planner might allocate
55 minutes to this unit, therefore. If s/he did, then the strategy would be to
work through each unit until passed or until time runs out on that unit. But the
time limit of a parent unit need not be the sum of its parts. By assigning more
time to the unit than the sum of its component units, the planner can execute
the following insmactional strategy:

IWork on each part for the specified time and number of repetitions.]
If the student can't reach proficiency on a unit in the time allocated to I
the unit, go on to the next unit. When all units have been presented, I
see if there is time remaining for the parent unit. If so, go back and[
work on the units that were not passed, l

Thus a relatively rich set of instructional alternatives are provided, all achieved
by the setting of a few values, rather than by involving programming-like
skills.

2O4

RAPIDS H Authoring Manual- August 1990 8. Instructional Organization

Authoring Conditional Course Sequences

Your RAPIDS II course can be authored so that certain content units are

presented only to those students who need additional exposure to the material
that those units deliver. This control over course sequence is determined by
the conditions you place on units in the instructional plan.

Conditions You can author conditions that determine whether or not a unit will be

delivered. A condition is an expression that will evaluate to either 'True' or
'False.' A simple RAPIDS II condition might be

Accuracy of lntro to Parts < 0.8

Here we follow the steps required to build such a condition. The author has
decided that the unit called 'Start Left Intro' can be skipped unless the student
was less than 80% accurate on the earlier 'Intro to Parts' unit. The condition
is created entirely by making selections in pop-up menus. When the 'Not
Defined' condition is selected, the first menu pops up, as shown below.

MoveToTop

lVloveToNode

Set]Depth

ReposttionUnit

Name: Elem 4

Comment: I

Order of pr t
Content:

Unit Weight

Start Left Intl 1

Start Rtght In 1

/
/ .

NodeK'_'llntr° to Operationsr_, _ . .,,,;'L'/:L',"

TOp '_ _ A dv an c e d_--_,," S t a r t

Elementary Orill,'_,_

h0peration Orill_--___ '. ._t

lAdvanced Or i 1 l'S'ta;'

Mode Condition Maximum Minimum
I

In=truer --- 1qot deflned

Instruct Not defined --- 1

This menu lets the user begin forming a condition.
The simple condition to be formed here (Accuracy
of Intro to Parts is less than 0.8) begins with a
reference to a parameter associated with another
unit, the Accuracy that the student exhibited in that
unit.

NOT
(

Number
Parameter

Unit

205

ORIGINAL PAGE iS

OF POOR QUALITY

RAPIDS H Authoring Manual _ August 1990 8. Instructional Organization

As soon as Parameter has been selected, the menu tided Select next symbol
disappears, and a Select parameter menu appears in its place.

ca)r_lml,-_r-am Accuracy is just one of four built in parameters that
Accuracy conditions can refer to. Accuracy on a unit is always a

Performances number between 0 and 1. It reflects the ratio of the

Speed number of items correct to the total number of items.
Tim • In U nit Performances is a count of the number of times that a

unit has been attempted. Speed is the time it took to complete the unit the last
time that it was completed. TimelnUnit is a measure of the total amount of
time the student spent in the unit in this session.

When the Accuracy parameter is
selected, its menu goes away and
another one appears that lists all the
units in the course. The author chooses

the one that the parameter --Accuracy,
in this case -- is to refer to. Choose

'Intro to Parts' in this menu. (As you
complete portions of the condition,
you will see them appear in the top
window.)

Select parameter
Top Node

Device Organization
Intro to Parts

Diverter Valve Intro
Introto Operations

Elementary
Start Left Intro

Start Right Intro
Advanced

Start When Dead in Air Intro
Operation Drill

Elementary Drill
Start Left Drill

Start Right Drill
Advanced Drill

Start When Dead in Air Drill

<>
l

<-

>
<
÷

/

The next symbol that this condition can contain is
one of those in the menu that is then presented.
Choose the less than symbol, <.

The next step in building this condition is to
specify what the accuracy of the Intro to Parts is to
be compared to. We could compare it with the
value of a parameter of some other unit, by
choosing Parameter from this menu. Since we
want to compare it with 0.8, we should choose
Number.

(

Number
Parameter

2O6

RAPIDS H Authoring Manual _ August 1990 8. Instructional Organization

I o I
1 2 3

4 5 6
7 8 9

• 0 ok

This number pad will appear. Its initial
value is 0. You can click on '.' and '8' to
enter the number. If you accidentally click
on an unwanted digit, you can use 'bs' to
backspace or 'clr' to clear the display.

When you have composed the number in
the keypad display, click on 'ok' on the
pad to accept it. The pad will disappear,
and the next menu will pop up.

I 0.8

-'7"ffFU;,
1 2 3

|

I tl 5 6

7 8 9

0 ok

OFI
AND

+

/

Done

At this point, you could begin to build a complex
condition -- one with several condition parts,
separated by 'OR' or 'AND.' For this simple
condition, however, you can simply choose the
menu item Done. The completed condition will be
displayed in the top window of the editor.

Exit IAccuracy
Save

of Intro to Parts < 8.8

3rganizational Unit

Name: Elementary

Comment:
Order of presentation: Random
Content:
Unit Weight Mode Condition

Start Left Intl 1 Instruct Defined

Start Right In" 1 Instruct Not defined

The condition
data element for
the 'Start Left
Intro' unit will
now be marked
as 'Defined.'

207

RAPIDS H Authoring Manual -- August 1990 8. Instructional Organization

Course
Parameters

You may have noticed that there is no way to specify parameters for the top
node in the tree in the organizational unit editor window. When you select the
top node, the organizational units displayed in the editor window are its
descendents. Of course, not all the options in that window would make sense
for the top node. For example, it wouldn't make sense to define a condition
for doing the course at all, since the condition could only refer to the values of
performances in parts of the course. It may make sense, however, to be able
to set a time limit for the course as a whole, and to determine how many times
the course must be (may be) repeated. The Course Params menu command
provides these features.

When you click on Course Params, you are
presented with a menu that asks which
parameters you want to set. You can determine
the maximum and minimum number of
repetitions for the course and its time limit.

Which Parameter?
Maximum Repetitions
Minimum Repetitions

Time Limit

208

RAPIDS H Authoring Manual -- August 1990 8. Instructional Organization

Set Depth

Focus

Move To Parent

Local Editing in Large Trees

In large RAPIDS II courses, tree structures in the instructional plan editor
may be very large. Naturally, you can use the scroll bars to move to any p.oint
that you want to work on in the tree, but this can take some time.
Furthermore, it may be that you would rather not view large amounts of
instructional plan material that are not relevant to the portion that you are
editing. Every time you add, delete, or move a unit in a tree, the entire tree is
redrawn. This drawing time can be noticeable and annoying in a large course.

MoveToParent !

MoveToTop

MoveToNode

SetDeptla

The solution offered by the instructional plan editor is
to permit local editing of trees. Several of the the
editor commands are related to these local editing

options.

The SetDepth command determines how much of the tree will be drawn
during editing. The default setting is 1000. This means that 1000 levels of the
tree will be displayed. You can greatly reduce the time it takes to redraw after
a change is made by setting the depth to 3 or 4. Only that many levels of the
tree will then be displayed in the window.

If only a few levels of the tree are being drawn, you need to be able to change
the focus of the editor. That is, you need a way to describe what part of the
tree you want to work on. You do this by making a node the current focus.
This node will serve as the root in the displayed portion of the tree. Focus is
not the same as selection. The selected node is the one you last clicked on and
it is highlighted in the tree window. The focused node is the one that is
displayed as the root of the tree in the tree window. You select a node in order
to do something to it or to examine data associated with its descendents. You
focus on a node in order to change what part of the tree is being displayed.

Focus is changed by using one of the three menu commands Move to
Parent, Move To Top, and Move To Node. These commands only
change what part of the tree is being displayed in the tree window of the
editor; they don't have any effect on the structure of the course.

This command has the effect of changing the focus to the parent of the node
that is currently the focus. Notice that it does not change the focus to the

parent of the currently selected node.

209

RAPIDS H Authoring Manual _ August 1990 8. Instructional Organization

Before MoveToParent After MoveToParent

Move To Top The Move To Top command has the effect of making the top or root node of
the tree the focus of the editor's tree window. It does not change the depth, so
portions of the tree furthest from the top node might not be displayed.

Move To Node Choosing Move To Node has the effect of making the currently selected
node the focus of the tree window. In other words, that node will be shown at
the left edge of the window, as though it were the root of the currently
edkable tree. Remember that you can always move above this focus by using
the commands Move To Parent or Move to Top.

210

9

Instructor Utilities

In the process of building a course, you will test the content units you are
constructing by using the Play command in the content editor. In order to test
the instructional plan, you'll want to run the course in the student
environment. Finally, when the entire course is complete, you'll need to
install a turnkey instructional environment on the computers that will be used
by students. This chapter describes how to test a course and how to build a
turnkey training environment.

One feature of the RAPIDS runtime environment is specifically designed for
instructors. By starting a session in a certain way, an instructor can examine
the performance of selected students. This performance report is cast in terms
of the structure of the course that is specified in the instructional plan. This
feature is described later in this chapter.

Testing a Course
Course contents can be tested in isolation in the content editor, using the Play

command described in Chapter 3. Testing an entire course, however,
observing the sequence of unit presentations under a variety of actual
performance conditions, must be done in the RAPIDS student environment.

You can test a course by clicking on the Run Instruction command on the
RAPIDS H Tools Menu.

211

RAPIDSHAuthoringManual-- August 1990 9. Instructor Utilities

tAPIIDS 11Tool3

Simulation Instruction

Generic Editor

Scene Editor

Build Simulation

Run Simulation

Content Editor

Plan Editor

Run Instruction

This will set up a training environment based on the simulation that has been

built in your system. The executive and prompt windows will disappear from
the screen. Then a number pad opens so that a student number can be entered.
(See the figure below.)

1

4

7

ok

0

2

5

8

0

3

$

9

dr

Enter Student Number,

Click on '0' and then on 'ok.' The student number 0 has the special
characteristic that it inhibits the recording of student data. You can carry out a
student exercise to test a course without preparing a student disk. RAPIDS
will prompt you to type the name of the course. In many cases, there will be
only one course associated with the simulation.

The set of windows that constitutes the student training environment
(discussed in Chapter 2) will then appear on your screen. You can work
through the course in the same way that a normal student would.

212

RAPIDS H Authoring Manual _ August 1990 9. Instructor Utilities

You can stop the course either by selecting Quit from the options menu or by
picking the Stop Session choice from the menu that is presented after each
unit. The student environment windows will close and you will then be

presented with the number pad for the next student.

You can resume editing a course or a content unit file by typ!ng in the
appropriate command. In order to do this you will have to type m an exec
window. The easiest way to do this is to get back your old exec window by
typing a control-E, killing the RunRapids session. An alternative approach is
to open a new exec window by using the right button menu in the screen
background.

Building a Turnkey Training Environment

Once your course is completely debugged, you will want to create turnkey
environments that cannot be disturbed by ordinary students. A different
command (Rapids, not RunRapids) is used to set up such an environment.

The command

(Rapids)
works much like RunRapids (see above) except that it does not require a
parameter. It builds the simulation and creates a clean student environment,
without exec or prompt windows, and then it opens the student number pad.
In addition, it locks the machine environment so that it cannot be altered. (For
those of you familiar with Interlisp-D, it does a (SAVEVM) and a
(VMEM.PURE.STATE T).)

Once the student environment has been locked in this way, it is impossible for

students to do anything that will have a long-term negative effect on the
environment. Even if a student somehow manages to open a Break window,
you can always resort to hitting the Reset button on the computer to restore
the environment to its initial state.

Student data is saved to a file with the name 'STUDENT#' where # represents
the student number. This file is saved to a directory specified by the global
variable StudentFileDirectory. If you do not set this variable, student data files
will be saved to the current directory. If you want to store student data on a

floppy, you must first set the directory variable, as in
(SETQ StudentFileDirectory '{FLOPPY})

213

RAPIDSHAuthoringManual_ August 1990 9. Instructor Utilities

Examining Student Data
Course authors and instructors can examine

student data in the RAPIDS training
environment. Begin by signing on as student
99. You will then be asked to select the

instructor activity that you would like to carry
out.

l=lunRapids Sessior_ I
Done I

Choose Examine Student Data. You must then specify which student's data
you would like to examine. The student number pad will appear again. Enter
the number of the student whose performance data you would like to see. You
will then be asked for which course you want to examine the data. Select the
appropriate course name from the menu.

In the case shown above, the ENGINESTARTER course was suspended by
the student.

After you select the course you want, a set of windows will open that are
reminiscent of the instructional plan editor. In fact, the tree displayed is the
instructionalplanof the course.

Exit

When you click on one of the nodes in this course tree, the node is
highlighted (see the figure below) and the performance data associated with
that node (for the specified student) is displayed in the window just to the
right of the tree window.

214

RAPIDS H Authoring Manual- August 1990 9. Instructor Utilities

In this figure, the 'Intro to Parts' unit has been presented once. It was
successfully completed in fifteen seconds with 100% accuracy.

Exit

.4Device 0raan izat ionl_'__

/, - , ----_._r..y,.!y.?_ _n_o i
/ _ , _....._. _'_';7_"
/ _.-'IE Ieme ntaryl_--.._ _,,,,,,,,,
I , i/ I I _,Start

Top NodeK'_,\ _Infro to 0perat ions_."----;;;;-.s r.Lw.
\

i_'_'_

Unit Name: Intro to Parts
Number of Presentations: 1

Su(cessfully Completed: Yes
Total Time in Unit: 15 second5

Ac(uracy s(ore: i 00,0%
SpeedS(ore: 9 seconds

The sibling node to 'Intro to Parts' is 'Diverter Valve Intro.' The depicted data
shows that a student got only an accuracy of only 50% on this node.

Exit

;,o**,,,,o,°*,o,°,o**,,,,,,

. . _Intro to Parts_
ADevice Organizationl'_--...___-_*----_*__C"*'_m''-_-

/' '
/ . ,_.._.--_8_art

/ .,,IE1ementarvl____.__ >#tHtH,
/_ , ri _Scar¢

iropNoaeK_I.t_o to0pera_1o._F-_':,":?E_7.

_,_IElementary Orill_.'_

h0peration Orill_ ' .._:_"

Unit Name: Oiverter Valve Intro
Number of Presentations: 1
Successfully Completed: Yes
Total Time in Unit: 24 seconds

Accuracy score: 50.0%
SpeedScore: 19 seconds

Clicking on the parent node to these two nodes shows the performance
measures interpreted for that node. Time is the sum of the times spent in the
descendent nodes. Accuracy is the weighted average of the accuracy scores of
the descendent nodes.

215

ORIGINAL PAGE IS

OF POOR QUALITY

RAPIDS H Authoring Manual- August 1990 9. Instructor Utilities

Top

Exit

_ I_ III |4t_lll Ill II _'_--__._ "/llllJllllllllllllllllll/_,,,,,,,,,,+

/_ _....q .t+..+.r.._.,,n..y.+..!.+.:..)..,q.t._..?!
/ . _,_,--_.__'G';_Z

/ _.o+IE1ementery#_"---=--_._!...... H,
• " _$tart

Node_-----_Intro to Operations_ " ,.........

• \ "'t Aa,,_,nc•dt----_.'_ ;'_';.'"_"

\ ___Ele entar_/ Orll 11_, "_$t,,-,-a.
\lope_tion o_i111__ ' :.sk_

Unit Name: Device Organization
Number of Presentations: 1
Successfully Completed: Yes
Total Time in Unit: 39 seconds
Accuracy score: 75,0%
SpeedScore: r_A

Experiment with this student data browser to learn more about how RAPIDS
scores and evaluates student performance.

216

RAPIDS11AuthoringManual-August1990 9. Instructor Utilities

References

Hollan, J. D. 1983. STEAMER: An Overview with Implications for AI Applications in Other
Domains. Presented at the Joint Services Workshop on Artificial Intelligence in
Maintenance, Institute of Cognitive Science, Boulder, CO: October 4-6, 1983.

Hollan, J. D., Hutchins, E. L., and Weitzman, L. 1984. STEAMER: An Interactive Inspectable
Simulation-based Training System, The AI Magazine, 1984, 2.

Norman, D. A. and Draper S. W. (Eds.) User-centered system design: New perspectives on
human-computer interaction.. Hillsdale, NJ: Lawrence Erlbaum Associates, 1986.

Kieras, D. E. What mental model should be taught: Choosing instructional content for complex
engineered systems. In J. Psotka, L. D. Massey & S. Mutter, (Eds.) Intelligent Tutoring
Systems: Lessons Learned. 1988, Hillsdale, NJ: Lawrence Erlbaum Associates.

Towne, D. M. A generalized model of fault-isolation performance. Proceedings, Artificial
Intelligence in Maintenance: Joint Services Workshop, 1984.

Towne, D. M. A generic expert diagnostician. In The Proceedings of the Air Force Workshop
on Artificial Intelligence Applications for Integrated Diagnostics, 1986.

Towne, D.M. The generalized maintenance trainer: Evolution and revolution. In W. B. Rouse
(Ed.), Advances in man-machine systems research, Vol 3, JAI Press, 1986.

Towne, D. M. and Johnson, M. C. Research on computer-aided design for maintainability
(Technical Report No. 109). Los Angeles: Behavioral Technology Laboratories, University
of Southern California, February 1987.

Towne, D. M. and Munro, A. Generalized maintenance trainer simulator: Development of
hardware and software. (Technical Report No. 81-9) San Diego: Navy Personnel Research
and Development Center, 1981.

Towne, D. M. and Munro, A. Preliminary design of the advanced ESAS System. (Technical
Report No. 105) Los Angeles: Behavioral Technology Laboratories, University of
Southern California, December 1984.

Towne, D. M. and Munro, A. The Intelligent Maintenance Training System. In J. Psotka, L. D.
Massey & S. Mutter, (Eds.) Intelligent Tutoring Systems: Lessons Learned. 1988,
Hillsdale, N J: Lawrence Erlbaum Associates.

Towne, D. M. & Munro, A. Artificial intelligence in training diagnostic skills. In D. Bierman, J.
Breuker, & J. Sandberg (Eds.) The Proceedings of the Fourth International Conference on
Artificial Intelligence and Education. Amsterdam: lOS, 1989a.

Towne, D. M. & Munro, A. RAPIDS: A simulation-based instructional authoring system for
technical training. Technical Report No. 112, Los Angeles: Behavioral Technology
Laboratories, University of Southern California, 1989b.

217

RAPIDSHAuthoringManual_ August 1990 9. Instructor Utilities

Towne, D. M. & Munro, A. Tools for Simulation-Based Training. Technical Report No. 113,
Los Angeles: Behavioral Technology Laboratories, University of Southern California,

September 1989c.

Towne, D. M. & Munro, A. Two approaches to simulation composition for training. In J.
Psotka and M. Farr (Eds.), Intelligent instruction by computer: From theory to practice.
London: Taylor and Francis, in press.

Towne, D. M., Munro, A., Johnson, M. C. Generalized maintenance trainer simulator: Test

and evaluation. (Technical Report No. 98) Los Angeles: University of Southern California,
Behavioral Technology Laboratories, 1982.

Towne, D. M., Munro, A., Pizzini, Q. A., & Surmon, D. S. Development of intelligent
maintenance training technology: Design study. Technical Report No. 106, Los Angeles:
Behavioral Technology Laboratories, University of Southem California, May 1985.

Towne, D. M., Munro, A., Pizzini, Q. A., & Surmon, D. S. Representing system behaviors
and expert behaviors for intelligent tutoring. Technical Report No. 108, Los Angeles:
Behavioral Technology Laboratories, University of Southern California, February 1987.

Towne, D. M., Munro, A., Pizzini, Q. A., Surmon, D. S., Coller, L. D., & Wogulis, J. L.
Model-building tools for simulation-based training. Interactive Learning Environments,
1990, 1, 33-50.

Towne, D. M., Munro, A., Pizzini, Q. A., Surmon, D. S., & Wogulis, J. L. ONR Final Report:
Intelligent maintenance training technology. Technical Report No. 110, Los Angeles:
Behavioral Technology Laboratories, University of Southern California, March 1988.

Towne, D. M., Munro, A., Johnson, M. C., and Lahey, G. F. Generalized Maintenance Trainer
Simulator: Test and Evaluation in the Laboratory Environment. (NPRDC TR 83-28) San
Diego: Navy Personnel Research and Development Center, August 1983.

218

Index

accuracy 206, 215
of Instructional unit 14, 195

accuracy score 202
Action 177 - 186

Add New Object (generic editor) 37
Add New State 48
Add Unit 196

adding objects in the scene editor 91
advantages of RAPIDS II 2
Affects Commands 133

All of several (menu) 186
appearances 29
arrow drawing primitive 57
Attribute vii, 64

author-defined 100

attribute and rule operations 129
Attribute Data View 101

Attribute Graphics View 103
Attribute Handle 101,140-162
Attribute Operations menu 119, 129
attributes for test equipment 159
Background (generic editor Window Op) 61
background elements, in scene editor 92
bitmap drawing primitive 57
box drawing primitive 58
Build Simulation 17, 163
BuildRapidsSimulation 15
Bury

generic editor Window Op 61
scene editor Window Op 137

Change Scene Name
scene editor Window Op 137

ChangeGridSize 62
Check Syntax 71, 78
circle drawing primitive 59
Clear-Text (in expositions) 188
clock (simulation) 97
Comment (content unit) 169
Compile

scene editor 114
computer aided instruction 1
Condition (instructional unit) 13, 195, 205
conditional connection 143

conditional course sequences 205-208
configuration options 173
connecting attributes 140

with the mouse 143-153

constant assignment rule 117
Content Editor 164
content item 9, 168, 177

Content Items menu 175
content unit 8, 165-174

exposition 173
editor 163, 164
scoring 202

continuous appearances vii, 49-52
continuous controls I rules 72
Continuous State 49-52
Copy

content unit editor 167

drawing primitive 60
generic editor 38, 52
scene editor 109

Copy to File (generic editor) 47
corrective feedback 28
course 17

course authoring 3
Course Params 208
Create

scene editor 109

Create Page
generic editor Window Op 62

Crosshairs 62
curve drawing primitive 59
Cycle

generic editor 38, 52
scene editor 109

deep simulation vi
Delete

generic editor 38, 52
scene editor 109

Delete
content item 167, 176
drawing primitive 60
unit 196

Display Window Actions
scene editor 113

Display-Window Operations 137-139
OisplayGrid 62
Don't Know 27
Done

generic editor 63

219

RAPIDSHAuthoringManual_ August 1990 Index

drawing primitive 60
drawing operations 57-60
drill mode 28
Edit

content item 175-177
content unit 166-174

scene editor Window Op 138
Edit Pause Condition 130
Editor Operations Menu

scene editor 84, 107-108
elementary rule actions 78
emphasis in authored presentations 24
EngineStarter 19
error feedback 23

examining student data 214
Expand 133
exposition 9-10, 187-191
exposition types 188
external rules 74-78
Find Object 178
Find One 179

Find several objects 181
Find the named object 179
Find the region 182
floating window 10, 24, 189-190
generic behavior rules 30, 66-74
generic editor 29-63
generic objects 29-56
Generic Objects menu 89
graphic rule actions 78
Graphic Utilities

generic editor Window Op 62
Grid

generic editor Window Op 61
scene editor Window Op 139

Grid. On/Off

generic editor Window Op 61
scene editor Window Op 139

Handle

generic editor 52
handle data view 100
handle graphic view 101
Handle Operations

generic editor 44, 54
handles 4

Hardcopy
generic editor Window Op 62
scene editor Window Op 139

hiding objects
generic editor 37

Highlight/Unhighlight-Object 189
Highlight/Unhighlight-Region 189
highlighting 24
how simulation works 96-99
identifying text 9, 174, 177
ImodEditor 194
IMTS vi
indicator 184
Inspect 132
installing RAPIDS II 14-15
Instruct mode 28

instructional content editor 8, 163-191
instructional organization 11, 192-210
instructional plan 4, 11, 192-210
instructor utilities 211-216

intelligent tutoring system 1
internal rules 66

invisible object 48
item editor window 175
item expositions 177
item scoring 202
Label

scene editor 110

levels of representation 7
library of generic objects 6
limit (instructional unit) 14, 195
line drawing primitive 59
line-width drawing primitive 60
local editing in large plans 209-210
locality of effect vi
Make Connection 154-159
map file 163
maximum (instructional unit) 14, 195
menu selection 25

message window 18
minimum (instructional unit) 14, 195
mode 13, 192, 195, 201
modeling at the element level 4
modes of instruction 28
mouse actions, simulation mode 111
mouse connections 151
Move

generic editor 44, 55
generic editor Window Op 62
scene editor 110
content item editor 176

220

RAPIDSHAuthoringManual-August1990 Index

move drawing primitive 60
Move To Node 210
Move to Page 47
Move to Parent 209

Move To Top 210
multi-scene simulation 134-137

multi-state object 33
multiple-choice questions 26, 184
Name (content unit editor) 169
needed attributes 122
New

Content Item 175
Content Unit 166

new configuration 170
Next Page

generic editor Window Op 62
object attributes

generic editor 38
object bundle 133
object data view 100
object designation 20
object graphic view 100
Object Graphics

Generic Editor 40

Object Handles
generic editor 41

Object Info 1O0
object info window 86

Object Operations
generic editor 36-48
scene editor 108-110

object scratchpad 18
One highlighted object (menu) 184
One of one (menu) 185
One of several (menu) 185
Open

scene editor 110

options menu 27
organizational unit 12
out of bounds values 120
pause attributes 115
Pause On�Off 132
Pause Rules 115
Pause/UnPause 112

pauses in the Scene Editor 130
performances 206
Play (Content Unit) 167
presentation order 174

Previous Page
Generic Editor Window Op 62

Primitive-Ops Menu 57
Probe 113, 160
processes viii, 65, 97
propagation of effect 4
range of rotation 50
range of translation 50
real-time rule actions 79
Redisplay

generic editor Window Op 62
scene editor Window Op 139

Rename

generic editor 44, 55
scene editor 110

Replace (content item action)183
Restore State

scene editor 115
Resume simulation 120
Rotate

drawing primitive 60
generic editor 45, 55
scene editor 110

rule authoring 64-79
by menu 66-77

rule data view 104

rule graphics view 107
rule operations menu 130
rule syntax 80-82
Rules

generic editor 45
scene editor 110

run-time corrections 117-123
Save State

scene editor 115
Scale 46

drawing primitive 60
generic editor command 56
scene editor command 110

scaled scene window 121, 137
scene 83
Scene Editor command 88
scene editor windows 84
scene icons 83, 134
scene map 135
scene navigation 135
Schedule 79
scheduled events 97

221

RAPIDSHAuthoringManual-August1990 , Index

scoring units 202
script (exposition) 11
SEdit editor 105
Set 133
Set attribute value 119

SetDepth 209
Show-Scene (in expositions) 189
Shrink

generic editor 63
generic editor Window Op 62
scene editor Window Op 139

simulation attribute data view 104
simulation attributes 97
simulation construction 83-137
simulation data 98-106
simulation debugging 124-134
simulation mode, scene editor 95, 111-116
Simulation Operations 87

scene editor 111-116
simulation window 18
Snap

scene editor 1t4

specific test equipment 160
speed (instructional unit) 14, 195
speed score 202
StartProcess 79
State Graphics 30, 56
State Operations (generic editor) 48-56
STEAMER 4

StopProcess 79
student action 10, 178-186
student evaluation 202-204
student interface 17-28
student number 212
surface simulation vi

switch changes 182
switch sequence 172
switch settings 22
system attributes 100
system configuration 9, 169
System Trace 116
test equipment 159-162
test mode 28

Text (in expositions) 188
text drawing primitive 59
time limit for an item 202
Trace Attributes 116
Trace On/Off 133

turnkey training environment 213
undefined attribute window 117
undefined attributes 117
undefined value 119
Unschedule 79
V-Flip

scene editor 109

Video (in expositions) 189
View 27

viewing simulation data 99-107
Wait (in expositions) 189
Wait-for-student (in expositions) 188
weight (instructional unit) 13, 195
Who Affects Me 102, 133
Whom Do I Affect 102, 133
window operations

generic editor 61-63
scene editor 137-139

222

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

